14.設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)直線平行的等價條件結(jié)合充分條件和必要條件的定義進行判斷即可.

解答 解:若a=1,則兩條直線方程為x+2y-1=0與直線x+2y+4=0,則兩直線平行,即充分性成立,
當(dāng)a=0時,兩條直線方程為2y-1=0與直線x+y+4=0,則兩直線不平行,
當(dāng)a≠0時,若兩直線平行,則滿足$\frac{1}{a}=\frac{a+1}{2}$≠$\frac{4}{-1}$,
由$\frac{1}{a}=\frac{a+1}{2}$得a(a+1)=2,即a2+a-2=0,得a=1或a=-2,則必要性不成立,
即“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充分不必要條件,
故選:A

點評 本題主要考查充分條件和必要條件的判斷,結(jié)合直線平行的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)集合A={x|1<x<3,x∈R},B={x||x-a|<4,x∈R},若x∈A是x∈B的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線的參數(shù)方程為$\left\{\begin{array}{l}x=8{t^2}\\ y=8t\end{array}\right.$(t為參數(shù)),則該拋物線的焦點坐標(biāo)為( 。
A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓3x2+4y2=6的離心率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)x,y滿足條件$\left\{\begin{array}{l}{3x+y≤13}\\{2x+3y≤18}\\{x≥0,y≥0}\end{array}\right.$,求z=5x+3y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1求雙曲線的實軸長、虛軸長、漸近線方程及離心率.
(2)求頂點在原點,對稱軸為坐標(biāo)軸,且經(jīng)過點(-6,-4)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某程序框圖如圖所示,該程序運行后輸出的值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知冪函數(shù)$f(x)={x^{2{m^2}-m-3}}({m∈Z})$為奇函數(shù),且在區(qū)間(0,+∞)上是減函數(shù),則f(x)=( 。
A.y=x3B.y=xC.y=x-3D.y=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果x=[x]+{x},[x]∈Z,0≤{x}<1,就稱[x]表示x的整數(shù)部分,{x}表示x的小數(shù)部分.已知數(shù)列{an}滿足a1=$\sqrt{5}$,an+1=[an]+$\frac{2}{\{{a}_{n}\}}$,則a2017-a2016等于(  )
A.2017+$\sqrt{5}$B.2016-$\sqrt{5}$C.6-$\sqrt{5}$D.6+$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案