16.已知函數(shù)y=log2$\frac{x}{8}$•log4$\frac{x}{2}$+$\frac{1}{2}$(2≤x≤2m,m>1,m∈R)
(1)求x=4${\;}^{\frac{2}{3}}$時對應(yīng)的y值;
(2)求該函數(shù)的最小值.

分析 (1)代入計算,可得x=4${\;}^{\frac{2}{3}}$時對應(yīng)的y值;
(2)換元,配方求該函數(shù)的最小值.

解答 解:(1)x=4${\;}^{\frac{2}{3}}$時,y=log2$\frac{x}{8}$•log4$\frac{x}{2}$+$\frac{1}{2}$=$\frac{-5}{3}×\frac{1}{6}+\frac{1}{2}$=$\frac{2}{9}$;
(2)y=log2$\frac{x}{8}$•log4$\frac{x}{2}$+$\frac{1}{2}$=(log2x-3)($\frac{1}{2}$log2x-$\frac{1}{2})+\frac{1}{2}$+$\frac{1}{2}$,
設(shè)t=log2x,t∈[1,m],∴y=$\frac{1}{2}{t}^{2}$-2t+2=$\frac{1}{2}(t-2)^{2}$
1<m≤2時,函數(shù)在[1,m]上單調(diào)遞減,ymin=$\frac{1}{2}{m}^{2}$-2m+2;
m>2時,函數(shù)在[1,2]上單調(diào)遞減,在[2,m]上單調(diào)遞增,t=2時,ymin=0,
綜上:ymin=$\left\{\begin{array}{l}{\frac{1}{2}{m}^{2}-2m+2,1<m≤2}\\{0,m>2}\end{array}\right.$….(15分)

點(diǎn)評 本題考查函數(shù)的單調(diào)性與最小值,考查函數(shù)值的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=sin(2x-\frac{π}{3})$.
(Ⅰ)當(dāng)x∈R時,求f(x)的單調(diào)增區(qū)間;
(Ⅱ)當(dāng)$x∈[0,\frac{π}{2}]$時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.經(jīng)測算,某型號汽車在勻速行駛過程中每小時耗油量y(升)與速度x(千米/每小時) (50≤x≤120)的關(guān)系可近似表示為:$y=\left\{\begin{array}{l}\frac{1}{75}({{x^2}-130x+4900}),x∈[{50,80})\\ 12-\frac{x}{60},x∈[{80,120}]\end{array}\right.$
(Ⅰ)該型號汽車速度為多少時,可使得每小時耗油量最低?
(Ⅱ)已知A,B兩地相距120公里,假定該型號汽車勻速從A地駛向B地,則汽車速度為多少時總耗油量最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)P(-2,$\frac{\sqrt{14}}{2}$)在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,過點(diǎn)P作圓O:x2+y2=2的切線,切點(diǎn)為A,B,若直線AB恰好過橢圓C的左焦點(diǎn)F,則a2+b2的值是( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知冪函數(shù)f(x)=xa的圖象過點(diǎn)(2,4),則a=2.若b=loga3,則2b+2-b=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=1-x+{log_2}\frac{1-x}{1+x}$,則$f({\frac{1}{2}})+f({-\frac{1}{2}})$的值為( 。
A.0B.-2C.2D.$2{log_2}\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.小明騎車上學(xué),一路勻速行駛,只是在途中遇到了一次交通堵塞,耽擱了一些時間.與以上事物吻合得最好的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在直角坐標(biāo)系xOy中,終邊在坐標(biāo)軸上的角α的集合是{α|α=$\frac{nπ}{2}$,n∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)z滿足z(2+i)=3-i,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案