α是第二象限角,P(x,
5
)為其終邊上一點(diǎn),cosα=
2
4
x,則sinα的值為( 。
A、
10
4
B、
6
4
C、
2
4
D、-
10
4
考點(diǎn):任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:由題意可得x<0,cosα=
2
4
x=
x
x2+5
,求得x的值,可得sinα=
5
x2+5
 的值.
解答: 解:由于α是第二象限角,P(x,
5
)為其終邊上一點(diǎn),則x<0,
又cosα=
2
4
x=
x
x2+5
,∴x=-
3
,
∴sinα=
5
x2+5
=
10
4
,
故選:A.
點(diǎn)評(píng):本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=mx2+(1-3m)x+2m-1.
(Ⅰ)設(shè)m=2時(shí),f(x)≤0的解集為A,集合B=(a,2a+1](a>0).若A⊆B,求a的取值范圍;
(Ⅱ)求關(guān)于x的不等式f(x)≤0的解集S;
(Ⅲ)若存在x>0,使得f(x)>-3mx+m-1成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2
-1與
2
+1的等比中項(xiàng)是(  )
A、1B、±1
C、-1D、以上選項(xiàng)都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x|x>-1},則以下關(guān)系中正確的是( 。
A、0?AB、{0}∈A
C、0∉AD、{0}?A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)定義域分別是Df、Dg的函數(shù)y=f (x)、y=g (x),規(guī)定:h(x)=
f(x)•g(x), 當(dāng)x∈Df且x∈Dg
 f(x) ,當(dāng)x∈Df且x∉Dg
 g(x) ,當(dāng)x∉Df且x∈Dg.

(1)若函數(shù)f (x)=
1
x-1
,g (x)=x2,寫(xiě)出函數(shù)h(x)的解析式;
(2)求問(wèn)題(1)中函數(shù)h(x)的值域;
(3)請(qǐng)?jiān)O(shè)計(jì)一個(gè)定義域?yàn)镽的函數(shù)y=f (x),及一個(gè)實(shí)常數(shù)a的值,使得f (x)•f (x+a)=x4+x2+1,并予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,直線x+
3
y-3=0的傾斜角( 。
A、
π
6
B、
π
3
C、
6
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)在區(qū)間(-1,1)上是減函數(shù),且f(1-a)<f(2a-1),則a的取值范圍為( 。
A、(
2
3
,+∞)
B、(-∞,
2
3
)
C、(0,
2
3
)
D、(
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)F和虛軸的一端點(diǎn)B作一條直線,若右頂點(diǎn)A到直線FB的距離為
b
7
,則該雙曲線的離心率為( 。
A、
2
B、2
C、2
2
2
D、2或
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若tanα=-
1
2
,則
1+2sinαcosα
sin2α-cos2α
的值是(  )
A、
1
3
B、3
C、-
1
3
D、-3

查看答案和解析>>

同步練習(xí)冊(cè)答案