14.已知函數(shù)f(x)=x2+2x+alnx,若f(x)在區(qū)間(0,1)上有極值,則實(shí)數(shù)a的取值范圍是(-4,0).

分析 求出函數(shù)f(x)=x2+2x+alnx在區(qū)間(0,1)內(nèi)無(wú)極值點(diǎn)的a的范圍,從而求出函數(shù)有極值的范圍即可.

解答 解:函數(shù)f(x)=x2+2x+alnx在區(qū)間(0,1)內(nèi)無(wú)極值
?函數(shù)f(x)=x2+2x+alnx在區(qū)間(0,1)內(nèi)單調(diào),
?函數(shù)f′(x)≥0或f′(x)≤0a∈R)在(0,1)內(nèi)恒成立,
由f′(x)=2x+2+$\frac{a}{x}$≥0在(0,1)內(nèi)恒成立,
?a≥(-2x-2x2max,x∈(0,1),即a≥0,
由f′(x)=2x+2+$\frac{a}{x}$≤0在(0,1)內(nèi)恒成立,
?a≤(-2x-2x2min,x∈(0,1),即a≤-4,
故f(x)在區(qū)間(0,1)上有極值,
則-4<a<0,
故答案為:(-4,0).

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、分離參數(shù)法、函數(shù)的單調(diào)性等基礎(chǔ)知識(shí)與基本技能方法,考查了推理能力和計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知命題p:?x∈R,x2+1≥a都成立;命題q:方程(ρcosα)2-(ρsina)2=a+2表示焦點(diǎn)在x軸上的雙曲線.
(Ⅰ)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若“p且q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,已知三邊a,b,c滿足b2+a2-c2=$\sqrt{3}$ab,則∠C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.正常情況下,年齡在18歲到38歲的人們,體重y(kg)依身高x(cm)的回歸方程為y=0.72x-58.5.張紅紅同學(xué)不胖不瘦,身高1米78,他的體重應(yīng)在70kg左右.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=a2=2,Sn=an+1(n≥2,n∈N*),則a10-a8=( 。
A.384B.768C.-$\frac{3}{512}$D.-$\frac{3}{1024}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知正實(shí)數(shù)x,y滿足$\frac{1}{2x+y}$+$\frac{4}{2x+3y}$=1,則x+y的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x(1-x),則f(-$\frac{5}{2}$)=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知關(guān)于x的不等式2x2-2mx+m<0的解集為A,其中m>0,若集合A中恰好有兩個(gè)整數(shù),則實(shí)數(shù)m的取值范圍是( 。
A.($\frac{8}{3}$,$\frac{28}{5}$)B.($\frac{8}{3}$,$\frac{28}{5}$]C.($\frac{8}{3}$,$\frac{18}{5}$)D.($\frac{8}{3}$,$\frac{18}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,交AC于點(diǎn)E,過(guò)點(diǎn)E作ED⊥BE交AB于點(diǎn)D.
(1)求證:AE2=AD•AB;
(2)已知AD=$\frac{2\sqrt{3}}{3}$,AE=2,求EC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案