9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=a2=2,Sn=an+1(n≥2,n∈N*),則a10-a8=(  )
A.384B.768C.-$\frac{3}{512}$D.-$\frac{3}{1024}$

分析 利用遞推關(guān)系、等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵Sn=an+1(n≥2,n∈N*),
∴an+1=Sn+1-Sn=an+2-an+1,
可得:an+2=2an+1,
又a1=a2=2,∴2+2=a3,即a3=4,
∴數(shù)列{an}從第三項(xiàng)開(kāi)始是等比數(shù)列,首項(xiàng)為4,公比為2.
∴${a}_{n}={a}_{3}×{2}^{n-3}$=4×2n-3=2n-1.(n≥2,n∈N*),
則a10-a8=29-27=3×27=384.
故選:A.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)集合M={1,2,3},N={1},則下列關(guān)系正確的是( 。
A.N∈MB.N∉MC.N=MD.N?M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.今年來(lái)空氣污染是一個(gè)生活中重要的話題,PM2.5就是其中一個(gè)指標(biāo),PM2.5指大氣總直徑小于或等于2.5微米的顆粒物,也稱(chēng)為可入肺顆粒物,PM2.5日均值在35毫克/立方米以下空氣質(zhì)量為一級(jí);在35毫克/立方米~75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo),某地區(qū)2014年12月1日至10日每天的PM2.5檢測(cè)數(shù)據(jù)如莖葉圖所示:
(1)期間的某天小劉來(lái)此地旅游,求當(dāng)天PM2.5的日均檢測(cè)數(shù)據(jù)未超標(biāo)的概率;
(2)陶先生在此期間也有兩天經(jīng)過(guò)此地,這兩天此地PM2.5檢測(cè)數(shù)據(jù)均未超標(biāo),請(qǐng)計(jì)算成這兩天質(zhì)量恰好有一天為一級(jí)的概率;
(3)從所給10填的數(shù)據(jù)中任意抽取三天數(shù)據(jù),記ξ表示抽到PM2.5檢測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知p:x≠1,q:x≥2,那么p是q的必要不充分條件.(填寫(xiě):“充分非必要”、“必要非充分”、“充分必要”、“既不充分也不必要”中的一種情況)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.記集合A={(x,y)|x2+y2≤1}和集合A={(x,y)|x+y≤1,x>0,y<0}表示的平面區(qū)域分別為Ω1,Ω2,若在區(qū)域Ω1內(nèi)任取一點(diǎn)M(x,y),則點(diǎn)M落在區(qū)域Ω2內(nèi)的概率為( 。
A.$\frac{1}{2π}$B.$\frac{1}{π}$C.$\frac{2}{π}$D.$\frac{1}{3π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=x2+2x+alnx,若f(x)在區(qū)間(0,1)上有極值,則實(shí)數(shù)a的取值范圍是(-4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知向量$\overrightarrow{m}$=(2sin(ωx+$\frac{π}{3}$),1),$\overrightarrow{n}$=(2cosωx,-$\sqrt{3}$)(ω>0),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的兩條相鄰對(duì)稱(chēng)軸間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[-$\frac{5π}{6}$,$\frac{π}{12}$]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論錯(cuò)誤的是(  )
A.異面直線AD與CB1角為60°B.BD∥平面CB1D1
C.AC1⊥BDD.AC1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)等比數(shù)列{an}的公比為q,其前n項(xiàng)之積為T(mén)n,并且滿足條件:a1>1,a2016a2017>1,$\frac{{a}_{2016}-1}{{a}_{2017}-1}<0$,給出下列結(jié)論:(1)0<q<1;(2)a2016a2018-1>0;(3)T2016是數(shù)列{Tn}中的最大項(xiàng);(4)使Tn>1成立的最大自然數(shù)等于4031,其中正確的結(jié)論為( 。
A.(2),(3)B.(1),(3)C.(1),(4)D.(2),(4)

查看答案和解析>>

同步練習(xí)冊(cè)答案