【題目】已知函數(shù)
(Ⅰ)求的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)說明函數(shù)的圖像可由正弦曲線經(jīng)過怎樣的變化得到;
(Ⅲ)若是第二象限的角,求
【答案】(Ⅰ);(Ⅱ)如解析所示;(Ⅲ)
【解析】試題分析:(Ⅰ)直接根據(jù)周期公式即可求出最小正周期,通過正弦型復(fù)合函數(shù)的單調(diào)性求解增區(qū)間;(Ⅱ)可先平移后伸縮變換,也可先伸縮后平移變換得到;(Ⅲ)把代到(1)中的函數(shù)解析式,結(jié)合的范圍求解的正余弦值,由二倍角可得答案.
試題解析:(Ⅰ)由可知,函數(shù)的最小正周期為
令,則的增區(qū)間是,
由,解得
所以函數(shù)的單調(diào)遞增區(qū)間是
(Ⅱ)將和圖像縱坐標不變, 橫坐標為原來的倍得到的圖像,將和圖像向左平移得到的圖像,將的圖像橫坐標不變,縱坐標為原來的倍得到的圖像
或,將和圖像向左平移,得到的圖像,將縱坐標
不變,橫坐標為原來的得到的圖像,將圖像橫坐標不變,縱坐標為原來的倍得到的圖像.
(Ⅲ)由知,所以,即,
又是第二象限的角,所以,
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)有且只有一個極值點,求實數(shù)的取值范圍;
(2)對于函數(shù),,,若對于區(qū)間上的任意一個,都有,則稱函數(shù)是函數(shù),在區(qū)間上的一個“分界函數(shù)”.已知,,問是否存在實數(shù),使得函數(shù)是函數(shù),在區(qū)間上的一個“分界函數(shù)”?若存在,求實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,且在上單調(diào)遞增,求實數(shù)的取值范圍
(2)是否存在實數(shù),使得函數(shù)在上的最小值為?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的方程為,其中.
(1)求證:直線恒過定點;
(2)當變化時,求點到直線的距離的最大值;
(3)若直線分別與軸、軸的負半軸交于兩點,求面積的最小值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場進行有獎促銷活動,顧客購物每滿500元,可選擇返回50元現(xiàn)金或參加一次抽獎,抽獎規(guī)則如下:從1個裝有6個白球、4個紅球的箱子中任摸一球,摸到紅球就可獲得100元現(xiàn)金獎勵,假設(shè)顧客抽獎的結(jié)果相互獨立.
(Ⅰ)若顧客選擇參加一次抽獎,求他獲得100元現(xiàn)金獎勵的概率;
(Ⅱ)某顧客已購物1500元,作為商場經(jīng)理,是希望顧客直接選擇返回150元現(xiàn)金,還是選擇參加3次抽獎?說明理由;
(Ⅲ)若顧客參加10次抽獎,則最有可能獲得多少現(xiàn)金獎勵?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校對高二年段的男生進行體檢,現(xiàn)將高二男生的體重數(shù)據(jù)進行整理后分成6組,并繪制部分頻率分布直方圖(如圖所示).已知第三組的人數(shù)為200.根據(jù)一般標準,高二男生體重超過屬于偏胖,低于屬于偏瘦.觀察圖形的信息,回答下列問題:
(1)求體重在內(nèi)的頻率,并補全頻率分布直方圖;
(2)用分層抽樣的方法從偏胖的學(xué)生中抽取人對日常生活習(xí)慣及體育鍛煉進行調(diào)查,則各組應(yīng)分別抽取多少人?
(3)根據(jù)頻率分布直方圖,估計高二男生的體重的中位數(shù)與平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是兩條不同的直線, 是三個不同的平面,給出下列四個命題:
①若,則 ②若,則
③若,則 ④若,則
其中正確命題的序號是( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知曲線,以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的倍后得到曲線.試寫出直線的直角坐標方程和曲線的參數(shù)方程:
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣﹣(a+2)lnx,其中實數(shù)a≥0.
(1)若a=0,求函數(shù)f(x)在x∈[1,3]上的最值;
(2)若a>0,討論函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com