【題目】某商場(chǎng)進(jìn)行有獎(jiǎng)促銷(xiāo)活動(dòng),顧客購(gòu)物每滿500元,可選擇返回50元現(xiàn)金或參加一次抽獎(jiǎng),抽獎(jiǎng)規(guī)則如下:從1個(gè)裝有6個(gè)白球、4個(gè)紅球的箱子中任摸一球,摸到紅球就可獲得100元現(xiàn)金獎(jiǎng)勵(lì),假設(shè)顧客抽獎(jiǎng)的結(jié)果相互獨(dú)立.
(Ⅰ)若顧客選擇參加一次抽獎(jiǎng),求他獲得100元現(xiàn)金獎(jiǎng)勵(lì)的概率;
(Ⅱ)某顧客已購(gòu)物1500元,作為商場(chǎng)經(jīng)理,是希望顧客直接選擇返回150元現(xiàn)金,還是選擇參加3次抽獎(jiǎng)?說(shuō)明理由;
(Ⅲ)若顧客參加10次抽獎(jiǎng),則最有可能獲得多少現(xiàn)金獎(jiǎng)勵(lì)?
【答案】(Ⅰ)(Ⅱ)希望顧客參加抽獎(jiǎng).(Ⅲ)400
【解析】
試題分析:(Ⅰ)先確定從裝有10個(gè)球的箱子中任摸一球的結(jié)果有10種,其中摸到紅球的結(jié)果有4種,因此根據(jù)古典概型概率求法得(Ⅱ)比較與3次抽獎(jiǎng)的數(shù)學(xué)期望的大小,由于3次抽獎(jiǎng)是相互獨(dú)立,所以可視為獨(dú)立重復(fù)試驗(yàn),其變量服從二項(xiàng)分布,由此可得數(shù)學(xué)期望為,即三次抽獎(jiǎng)中可獲得的獎(jiǎng)勵(lì)金額的均值為元.
(Ⅲ)求概率最大時(shí)對(duì)應(yīng)的獎(jiǎng)金:由于變量服從二項(xiàng)分布,所以作商得,,因此最大,即獲得400元的現(xiàn)金
試題解析:(Ⅰ)因?yàn)?/span>從裝有10個(gè)球的箱子中任摸一球的結(jié)果共有種,摸到紅球的結(jié)果共有種,所以顧客參加一次抽獎(jiǎng)獲得100元現(xiàn)金獎(jiǎng)勵(lì)的概率是
.……2分
(Ⅱ)設(shè)表示顧客在三次抽獎(jiǎng)中中獎(jiǎng)的次數(shù),由于顧客每次抽獎(jiǎng)的結(jié)果是相互獨(dú)立的,則
,
所以.
由于顧客每中獎(jiǎng)一次可獲得100元現(xiàn)金獎(jiǎng)勵(lì),因此該顧客在三次抽獎(jiǎng)中可獲得的獎(jiǎng)勵(lì)金額的
均值為元.
由于顧客參加三次抽獎(jiǎng)獲得現(xiàn)金獎(jiǎng)勵(lì)的均值120元小于直接返現(xiàn)的150元,所以商場(chǎng)經(jīng)理希望顧客參加抽獎(jiǎng).……………7分
(Ⅲ)設(shè)顧客參加10次抽獎(jiǎng)摸中紅球的次數(shù)為.
由于顧客每次抽獎(jiǎng)的結(jié)果是相互獨(dú)立的,則.
于是,恰好次中獎(jiǎng)的概率為
,.
從而,,
當(dāng)時(shí),;
當(dāng)時(shí),,
則最大.
所以,最有可能獲得的現(xiàn)金獎(jiǎng)勵(lì)為元.
于是,顧客參加10次抽獎(jiǎng),最有可能獲得400元的現(xiàn)金獎(jiǎng)勵(lì).………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),橢圓的離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).
(I)求的方程;
(II)設(shè)過(guò)點(diǎn)的動(dòng)直線與相交于兩點(diǎn),當(dāng)的面積最大時(shí),求的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是定義在上的函數(shù),并且滿足下面三個(gè)條件:①對(duì)任意正數(shù),都有;②當(dāng)時(shí), ;③.
(1)求, 的值;
(2)證明在上是減函數(shù);
(3)如果不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次國(guó)際學(xué)術(shù)會(huì)議上,來(lái)自四個(gè)國(guó)家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國(guó)人,還會(huì)說(shuō)英語(yǔ).
乙是法國(guó)人,還會(huì)說(shuō)日語(yǔ).
丙是英國(guó)人,還會(huì)說(shuō)法語(yǔ).
丁是日本人,還會(huì)說(shuō)漢語(yǔ).
戊是法國(guó)人,還會(huì)說(shuō)德語(yǔ).
則這五位代表的座位順序應(yīng)為( )
A. 甲丙丁戊乙 B. 甲丁丙乙戊
C. 甲乙丙丁戊 D. 甲丙戊乙丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)若的一個(gè)極值點(diǎn)到直線的距離為1,求的值;
(2)求方程的根的個(gè)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)求的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)說(shuō)明函數(shù)的圖像可由正弦曲線經(jīng)過(guò)怎樣的變化得到;
(Ⅲ)若是第二象限的角,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, ,設(shè).
(1)求函數(shù)的最小正周期;
(2)由的圖象經(jīng)過(guò)怎樣變換得到的圖象?試寫(xiě)出變換過(guò)程;
(3)當(dāng)時(shí),求函數(shù)的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)客棧的工作人員為了控制經(jīng)營(yíng)成本,減少浪費(fèi),合理安排入住游客的用餐,他們通過(guò)統(tǒng)計(jì)每個(gè)月入住的游客人數(shù),發(fā)現(xiàn)每年各個(gè)月份來(lái)客棧入住的游客人數(shù)會(huì)發(fā)生周期性的變化,并且有以下規(guī)律:
①每年相同的月份,入住客棧的游客人數(shù)基本相同;
②入住客棧的游客人數(shù)在2月份最少,在8月份最多,相差約400人;
③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)若入住客棧的游客人數(shù)與月份之間的關(guān)系可用函數(shù)(, , )近似描述,求該函數(shù)解析式;
(2)請(qǐng)問(wèn)哪幾個(gè)月份要準(zhǔn)備不少于400人的用餐?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線圖.
根據(jù)該折線圖,下列結(jié)論正確的是( )
A. 月接待游客逐月增加
B. 年接待游客量逐年減少
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客相對(duì)于7月至12月,波動(dòng)性更大,變化比較明顯
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com