(2012•邯鄲一模)在△ABC所在的平面內(nèi)有一點(diǎn)P,如果2
PA
+
PC
=
AB
-
PB
,那么△PBC的面積與△ABC的面積之比是( 。
分析:向量式2
PA
+
PC
=
AB
-
PB
,可化為2
PA
+
PC
=
AP
,即
PC
=-3
PA
可知向量
PC
、
PA
方向相反,且
PC
模長(zhǎng)是
PA
的3倍,故△PBC和面積與△ABC的面積之比化為邊PC與AC的比
解答:解:∵2
PA
+
PC
=
AB
-
PB
,
2
PA
+
PC
=
AP
,即
PC
=-3
PA

可知向量
PC
、
PA
方向相反,且
PC
模長(zhǎng)是
PA
的3倍,即P是AC的四等分點(diǎn),
設(shè)點(diǎn)B到直線AC的距離為h,
故△PBC和面積與△ABC的面積之比為
1
2
×PC×h
1
2
×AC×h
=
3
4

故選A
點(diǎn)評(píng):本題考查向量的基本知識(shí),化簡(jiǎn)向量式是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲一模)閱讀如圖的程序框圖.若輸入n=6,則輸出k的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲一模)如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=
2

(Ⅰ)求證:平面EAB⊥平面ABCD;
(Ⅱ)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲一模)已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1+a5=
1
3
a32
,S7=56.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)若數(shù)列{bn}滿足b1=a1且bn+1-bn=an+1,求數(shù)列{
1
bn
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲一模)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與x軸的正半軸重合.直線l的參數(shù)方程為:
x=-1+
3
2
t
y=
1
2
t       
(t為參數(shù)),曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(Ⅰ)寫(xiě)出C的直角坐標(biāo)方程,并指出C是什么曲線;
(Ⅱ)設(shè)直線l與曲線C相交于P、Q兩點(diǎn),求|PQ|值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲一模)給出以下命題:①?x∈R,sinx+cosx>1②?x∈R,x2-x+1>0③“x>1”是“|x|>1”的充分不必要條件,其中正確命題的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案