.平面區(qū)域由以點(diǎn)為頂點(diǎn)的三角形內(nèi)部及邊界組成,若在上有無(wú)窮多個(gè)點(diǎn)使目標(biāo)函數(shù)取得最大值,則
A. B. C.或 D.或
D
【解析】因?yàn)槟繕?biāo)函數(shù)可化為, 由題意知,當(dāng)m>0時(shí),直線(xiàn)與直線(xiàn)AB重合時(shí),z取得最大值,所以;當(dāng)m<0時(shí),直線(xiàn)與直線(xiàn)BC重合時(shí),z取得最小值,所以.所以m的值為4或-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇蘇北四市高三第一次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)點(diǎn)的兩條直線(xiàn)段圍成.按設(shè)計(jì)要求扇環(huán)面的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線(xiàn)部分)進(jìn)行裝飾時(shí),直線(xiàn)部分的裝飾費(fèi)用為4元/米,弧線(xiàn)部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí),取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇鹽城第一中學(xué)高三第二學(xué)期期初檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)點(diǎn)的兩條直線(xiàn)段圍成.按設(shè)計(jì)要求扇環(huán)面的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線(xiàn)部分)進(jìn)行裝飾時(shí),直線(xiàn)部分的裝飾費(fèi)用為4元/米,弧線(xiàn)部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí),取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高一下期中數(shù)學(xué)試卷(解析版) 題型:解答題
若以點(diǎn)為頂點(diǎn)的三角形為直角三角形,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江西省高二第二學(xué)期第一次月考理科數(shù)學(xué) 題型:選擇題
已知點(diǎn)(3,4)在橢圓上,則以點(diǎn)為頂點(diǎn)的橢圓的內(nèi)接矩形的面積是( 。
A、12 B、24 C、48 D、與的值有關(guān)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com