已知向量
a
b
的夾角為60°,且
a
=(-2,-6),|
b
|=
10
,則
a
b
=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量的模、夾角形式的數(shù)量積公式,求出即可
解答: 解:∵
a
=(-2,-6),
|
a
|=
(-2)2+(-6)2
=2
10

a
b
=|
a
||
b
|cos<
a
,
b
=2
10
×
10
cos60°
=10.
故答案為:10.
點(diǎn)評(píng):本題考查了向量的數(shù)量積公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的公差為d,點(diǎn)(an,bn)在函數(shù)f(x)=2x的圖象上(n∈N*).
(1)若a1=-2,點(diǎn)(a8,4b7)在函數(shù)f(x)的圖象上,求數(shù)列{an}的前n項(xiàng)和Sn;
(2)若a1=1,函數(shù)f(x)的圖象在點(diǎn)(a2,b2)處的切線在x軸上的截距為2-
1
ln2
,求數(shù)列{
an
bn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)?x∈R,有f(x+2)=f(x)-f(1),且當(dāng)x∈[2,3]時(shí),f(x)=-2x2+12x-18,若函數(shù)y=f(x)-loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,點(diǎn)E在AB上且EB=2AE,AC與DE交于點(diǎn)F,則
△CDF的周長
△AEF的周長
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
e1
e2
的夾角為α,且cosα=
1
3
,若向量
a
=3
e1
-2
e2
,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,O為原點(diǎn),A(-1,0),B(0,
3
),C(3,0),動(dòng)點(diǎn)D滿足|
CD
|=1,則|
OA
+
OB
+
OD
|的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要制作一個(gè)容器為4m3,高為1m的無蓋長方形容器,已知該容器的底面造價(jià)是每平方米20元,側(cè)面造價(jià)是每平方米10元,則該容器的最低總造價(jià)是
 
(單位:元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的內(nèi)角滿足sinA+
2
sinB=2sinC,則cosC的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若空間中四條兩兩不同的直線l1,l2,l3,l4,滿足l1⊥l2,l2∥l3,l3⊥l4,則下列結(jié)論一定正確的是(  )
A、l1⊥l4
B、l1∥l4
C、l1與l4既不垂直也不平行
D、l1與l4的位置關(guān)系不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案