【題目】若存在與正實數(shù),使得成立,則稱函數(shù)在處存在距離為的對稱點,把具有這一性質(zhì)的函數(shù)稱之為“型函數(shù)”.
(1)設,試問是否是“型函數(shù)”?若是,求出實數(shù)的值;若不是,請說明理由;
(2)設對于任意都是“型函數(shù)”,求實數(shù)的取值范圍.
【答案】(1)是,;(2).
【解析】
(1)假設函數(shù)是“型函數(shù)”,由定義得出,經(jīng)過化簡計算出正實數(shù)的值即可;
(2)由題中定義得出,利用參變量分離法得出,利用雙勾函數(shù)的單調(diào)性求出在上的值域,即可得出實數(shù)的取值范圍.
(1)假設函數(shù)是“型函數(shù)”,由定義得出,
,由,得,
則有,,化簡得,解得.
因此,函數(shù)是“型函數(shù)”;
(2)對于任意都是“型函數(shù)”,
則,
即,
化簡得,即,
由雙勾函數(shù)的單調(diào)性可知,函數(shù)在上是增函數(shù).
當時,,所以,,解得.
因此,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,邊長為的正方形與梯形所在的平面互相垂直,已知,,,點在線段上.
(1)證明:平面平面;
(2)判斷點的位置,使得平面與平面所成的銳二面角為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖(1)為東方體育中心,其設計方案側面的外輪廓線如圖(2)所示;曲線是以點為圓心的圓的一部分,其中,曲線是拋物線的一部分;且恰好等于圓的半徑,與圓相切且.
(1)若要求米,米,求與的值;
(2)當時,若要求不超過45米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓的右焦點為,直線為.
(1)求到點和直線的距離相等的點的軌跡方程;
(2)過點作直線交橢圓于點,,又直線交于點,若,求線段的長;
(3)已知點的坐標為,,直線交直線于點,且和橢圓的一個交點為點,是否存在實數(shù),使得?若存在,求出實數(shù),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】5張獎券中有2張是中獎的,先由甲抽1張,然后由乙抽1張,抽后不放回,求:
(1)甲中獎的概率;
(2)甲、乙都中獎的概率;
(3)只有乙中獎的概率;
(4)乙中獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將數(shù)列的前項分成兩部分,且兩部分的項數(shù)分別是,若兩部分和相等,則稱數(shù)列的前項的和能夠進行等和分割.
(1)若,試寫出數(shù)列的前項和所有等和分割;
(2)求證:等差數(shù)列的前項的和能夠進行等和分割;
(3)若數(shù)列的通項公式為:,且數(shù)列的前項的和能夠進行等和分割,求所有滿足條件的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列A: , ,… ().如果對小于()的每個正整數(shù)都有 < ,則稱是數(shù)列A的一個“G時刻”.記“是數(shù)列A的所有“G時刻”組成的集合.
(1)對數(shù)列A:-2,2,-1,1,3,寫出的所有元素;
(2)證明:若數(shù)列A中存在使得>,則 ;
(3)證明:若數(shù)列A滿足- ≤1(n=2,3, …,N),則的元素個數(shù)不小于 -.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),將C上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>3倍,得曲線C1.以O為極點,x軸正半軸為極軸建立極坐標系.
(1)求C1的極坐標方程
(2)設M,N為C1上兩點,若OM⊥ON,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com