直線x+y=1與圓x2+y2=2的位置關(guān)系是( 。
A、相切B、相交
C、相離D、不能確定
考點:直線與圓的位置關(guān)系
專題:計算題,直線與圓
分析:求出圓心到直線的距離d,與圓的半徑r比較大小,即可判斷出直線與圓的位置關(guān)系.
解答: 解:圓x2+y2=2的圓心坐標(biāo)為(0,0),半徑為
2

∴圓心(0,0)到直線x+y-1=0的距離為d=
1
2
2
,
∴直線x+y=1與圓x2+y2=2相交.
故選B.
點評:本題考查學(xué)生掌握判斷直線與圓位置關(guān)系的方法是比較圓心到直線的距離d與半徑r的大小,靈活運用點到直線的距離公式化簡求值,是一基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+lnx,則f′(1)等于(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx,y=cosx和y=tanx具有相同單調(diào)性的一個區(qū)間是( 。
A、(0,
π
2
B、(
π
2
,π)
C、(π,
2
D、(-
π
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
1+2x
+(x-1)0
的定義域為(  )
A、(-
1
2
,1)∪(1,+∞)
B、(-2,1)∪(1,+∞)
C、(-
1
2
,+∞)
D、(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2+a12+2a5=120,則a6為( 。
A、40B、36C、30D、15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸入l=2,m=3,n=5,則輸出的y的值是( 。
A、66B、67C、68D、69

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈[-1,1],則x2+(a-4)x+4-2a>0的解為( 。
A、x>3或x<2
B、x>2或x<1
C、x>3或x<1
D、1<x<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1+a2+a3=5,a7+a8+a9=10,則a4+a5+a6=( 。
A、5
2
B、15
C、
15
2
D、50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(1+x),g(x)=ln(1-x).
(1)求函數(shù)f(x)-g(x)的定義域;
(2)判斷函數(shù)f(x)-g(x)的奇偶性,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案