19.已知正項(xiàng)數(shù)列{an}滿足a1=2,a2=1,且$\frac{a_n}{{{a_{n+1}}}}$+$\frac{a_n}{{{a_{n-1}}}}$=2,則a12的值為(  )
A.$\frac{1}{6}$B.6C.$\frac{1}{3}$D.3

分析 由$\frac{a_n}{{{a_{n+1}}}}$+$\frac{a_n}{{{a_{n-1}}}}$=2,變形為$\frac{1}{{a}_{n+1}}+\frac{1}{{a}_{n-1}}$=$\frac{2}{{a}_{n}}$,利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵$\frac{a_n}{{{a_{n+1}}}}$+$\frac{a_n}{{{a_{n-1}}}}$=2,
∴$\frac{1}{{a}_{n+1}}+\frac{1}{{a}_{n-1}}$=$\frac{2}{{a}_{n}}$,
∴數(shù)列$\{\frac{1}{{a}_{n}}\}$是等差數(shù)列,首項(xiàng)為$\frac{1}{2}$,公差為$\frac{1}{2}$.
∴$\frac{1}{{a}_{12}}$=$\frac{1}{2}+11×\frac{1}{2}$=6.
∴a12=$\frac{1}{6}$.
故選:A.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合P={x|0≤x≤3},N={x∈Z|-3<x<3},則P∩N=(  )
A.{x|0≤x<3}B.{x|-3<x<3}C.{0,1,2}D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.10名同學(xué)在高一和高二的數(shù)學(xué)成績(jī)?nèi)绫恚ò俜种疲?br />
x74716876736770657472
y76757076796577627271
其中x為高一數(shù)學(xué)成績(jī),y為高二數(shù)學(xué)成績(jī).
(1)作出散點(diǎn)圖并判斷y與x是否是相關(guān)關(guān)系,如果是,求回歸直線方程.
(2)若某同學(xué)高一的數(shù)學(xué)成績(jī)是80分,那么他高二的數(shù)學(xué)成績(jī)約為多少?
(附:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值)
$\sum_{i=1}^{10}{x}_{i}$=710,$\sum_{i=1}^{10}{y}_{i}$=723,$\overline{x}$=71,$\overline{y}$=72.3,$\sum_{i=1}^{10}{x}_{i}{y}_{i}$=51476,$\sum_{i=1}^{10}{{x}_{1}}^{2}$=50520,$\sum_{i=1}^{10}{{y}_{1}}^{2}$=52541.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.“因?yàn)閷?duì)數(shù)函數(shù)y=logax(a>0,且a≠1)是增函數(shù); 而y=log${\;}_{\frac{1}{2}}$x是指數(shù)函數(shù),所以y=log${\;}_{\frac{1}{2}}$x是增函數(shù).”這個(gè)推理(  )
A.正確B.大前提錯(cuò)誤C.小前提錯(cuò)誤D.推理形式錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知cos(α+$\frac{π}{4}}$)=$\frac{2}{3}$,求sin(${\frac{π}{4}$-α)的值$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知{an}為正項(xiàng)等比數(shù)列,且a1a3=4,a4=8,數(shù)列{bn}前n項(xiàng)和為Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n.
(1)試求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=$\frac{_{n}}{{a}_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.一個(gè)電路如圖所示,A,B,C,D,E,F(xiàn)為6個(gè)開(kāi)關(guān),其閉合的概率都是$\frac{1}{2}$,且是相互獨(dú)立的,則燈亮的概率是$\frac{23}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若平面α、β的法向量分別為n1=(1,2,-2),n2=(-3,-6,6),則(  )
A.α∥βB.α⊥βC.α,β相交但不垂直D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.不解三角形,確定下列判斷中正確的是(  )
A.a=7,b=14,∠A=30°,有兩解B.a=6,b=9,∠A=45°,有兩解
C.a=30,b=25,∠A=150°,有一解D.a=9,b=10,∠B=60°,無(wú)解

查看答案和解析>>

同步練習(xí)冊(cè)答案