4.如圖所示,足球門左右門柱分別立在A、B處,假定足球門寬度AB為7米,在距離右門柱15米的C處,一球員帶球沿與球門線AC成28°角的CD方向以平均每秒6.5米的速度推進(jìn),2秒后到達(dá)D處射門.問:
(1)D點到左右門柱的距離分別為多少米?
(2)此時射門張角θ為多少?(注:cos28°≈$\frac{23}{26}$)

分析 (1)求出CD,利用余弦定理,求出BD,AD;
(2)利用余弦定理,即可求出此時射門張角θ.

解答 解:(1)由題意,CD=13米,
∴BD=$\sqrt{1{3}^{2}+1{5}^{2}-2×13×15×\frac{23}{26}}$=7米,
AD=$\sqrt{1{3}^{2}+2{2}^{2}-2×13×22×\frac{23}{26}}$=$\sqrt{147}$=7$\sqrt{3}$米,
(2)cosθ=$\frac{49+147-49}{2×7×7\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,∴θ=60°.

點評 本題考查利用數(shù)學(xué)知識解決實際問題,考查余弦定理的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在等差數(shù)列{an}中,已知前20項之和S20=170,則a5+a16=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=excosx,則函數(shù)f(x)在點(0,f(0))處的切線方程為(  )
A.y=1B.x-y+1=0C.x+y+1=0D.x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對任意的x∈[-$\frac{π}{6}$,$\frac{π}{2}$],不等式sin2x+asinx+a+3≥0恒成立,則實數(shù)a的取值范圍是a≥-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ex-1,g(x)=ln(x+1).
(1)求函數(shù)φ(x)=g(x)+x+1平行于直線2x-y+1=0的切線方程;
(2)求函數(shù)F(x)=|f(x)|-g(x)的最小值;
(3)已知0≤y<x,試比較f(x-y)與g(x)-g(y)的大小,并證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,AD是BC邊上中線,下列錯誤的是( 。
A.$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AD}$B.$\overrightarrow{AD}$+$\overrightarrow{DC}$=$\overrightarrow{AC}$C.$\overrightarrow{CA}$+$\overrightarrow{AD}$=$\overrightarrow{DC}$D.$\overrightarrow{DB}$+$\overrightarrow{AD}$=$\overrightarrow{AB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.f(x)是定義域為R的偶函數(shù),f′(x)為f(x)的導(dǎo)函數(shù),當(dāng)x≤0時,恒有f(x)+xf′(x)<0,設(shè)g(x)=xf(x),則滿足g(2x-1)<g(3)的實數(shù)x的取值范圍是( 。
A.(2,+∞)B.(-1,2)C.(-∞,-2)∪(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤$\frac{π}{2}$),其圖象與直線y=-1相鄰兩個交點的距離為π.若f(x)>1對任意x∈(-$\frac{π}{12}$,$\frac{π}{3}$)恒成立,則φ的取值范圍是( 。
A.[$\frac{π}{12}$,$\frac{π}{2}$]B.[$\frac{π}{6}$,$\frac{π}{3}$]C.[$\frac{π}{12}$,$\frac{π}{3}$]D.($\frac{π}{6}$,$\frac{π}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若f(1)=f(5),則拋物線y=ax2+bx+c的對稱軸是x=3.

查看答案和解析>>

同步練習(xí)冊答案