20.?dāng)?shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N*,總有an,Sn,an2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知函數(shù)f(x)對(duì)任意的x,y∈R均有f(x+y)=f(x)•f(y),$f(1)=\frac{1}{2}$.bn=an•f(n),n∈N*,求f(n)的表達(dá)式并證明:b1+b2+…+bn<2.

分析 (1)由已知條件推導(dǎo)出2an=an+an2-an-1-an-12,從而得到{an}是公差為1的等差數(shù)列,由此能求出an=n;
(2)可令x=n,y=1,即有f(n+1)=$\frac{1}{2}$f(n),由等比數(shù)列的通項(xiàng)公式可得f(n);求出bn=an•f(n)=n•($\frac{1}{2}$)n,運(yùn)用數(shù)列求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理,即可得證.

解答 解:(1)∵各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,
對(duì)任意n∈N*,總有an,Sn,an2成等差數(shù)列,
∴2Sn=an+an2,2Sn-1=an-1+an-12,
兩式相減,得2an=an+an2-an-1-an-12
∴an+an-1=(an+an-1)(an-an-1),
又an,an-1為正數(shù),∴an-an-1=1,n≥2,
∴{an}是公差為1的等差數(shù)列,
當(dāng)n=1時(shí),2S1=a1+a12,得a1=1,或a1=0(舍),
∴an=n.
(2)函數(shù)f(x)對(duì)任意的x,y∈R均有f(x+y)=f(x)•f(y),$f(1)=\frac{1}{2}$.
可令x=n,y=1,即有f(n+1)=f(n)f(1)=$\frac{1}{2}$f(n),
可得f(n)=f(1)•($\frac{1}{2}$)n-1=($\frac{1}{2}$)n;
bn=an•f(n)=n•($\frac{1}{2}$)n
證明:設(shè)Tn=b1+b2+…+bn=1•($\frac{1}{2}$)+2•($\frac{1}{2}$)2+…+n•($\frac{1}{2}$)n;
$\frac{1}{2}$Tn=1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n+1
兩式相減可得,$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1;
可得b1+b2+…+bn=2[1-$\frac{1}{{2}^{n}}$-n•($\frac{1}{2}$)n+1]<2.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.根據(jù)下列條件求曲線的標(biāo)準(zhǔn)方程:
(1)準(zhǔn)線方程為$x=-\frac{3}{2}$的拋物線;
(2)焦點(diǎn)在x軸上,且過點(diǎn)(2,0)、$(2\sqrt{3},\sqrt{6})$的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),若|AF|=5,則弦AB的長為( 。
A.10B.$\frac{25}{4}$C.$\frac{25}{2}$D.$\frac{13}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線x=t分別與函數(shù)$f(x)=sin(2x-\frac{π}{12})+3$、g(x)=$\sqrt{3}cos(2x-\frac{π}{12})-1$的圖象交于P、Q兩點(diǎn),當(dāng)實(shí)數(shù)t變化時(shí),|PQ|的最大值為(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知三棱錐的四個(gè)面中,最多共有(  )個(gè)直角三角形?
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R,則函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.響應(yīng)國家提出的“大眾創(chuàng)業(yè),萬眾創(chuàng)新”的號(hào)召,小王同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè).經(jīng)過市場調(diào)查,生產(chǎn)某小型電子產(chǎn)品需投入年固定成本為2萬元,每生產(chǎn)x萬件,需另投入流動(dòng)成本為C(x)萬元.在年產(chǎn)量不足8萬件時(shí),$C(x)=\frac{1}{3}{x^2}+2x$(萬元);在年產(chǎn)量不小于8萬件時(shí),$C(x)=7x+\frac{100}{x}-37$(萬元).每件產(chǎn)品售價(jià)為6元.假設(shè)小王生產(chǎn)的商品當(dāng)年全部售完.
(Ⅰ)寫出年利潤P(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)解析式(注:年利潤=年銷售收入-固定成本-流動(dòng)成本);
(Ⅱ)年產(chǎn)量為多少萬件時(shí),小王在這一商品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,x)若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$平行,則實(shí)數(shù)x的值是( 。
A.-2B.0C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知集合A={-1,0,1},$B=\left\{x\right.|\frac{x+1}{x-1}\left.{<0}\right\}$,則A∩B={0}.

查看答案和解析>>

同步練習(xí)冊答案