A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 一個(gè)三棱錐V-ABC中,側(cè)棱VA⊥底面ABC,并且△ABC中∠B是直角,則可知三棱錐四個(gè)面都是直角三角形,從而可得結(jié)論
解答 解:如果一個(gè)三棱錐V-ABC中,側(cè)棱VA⊥底面ABC,并且△ABC中∠B是直角.
因?yàn)锽C垂直于VA的射影AB,所以VA垂直于平面ABC的斜線(xiàn)VB,
所以∠VBC是直角.
由VA⊥底面ABC,所以∠VAB,∠VAC都是直角.
因此三棱錐的四個(gè)面中∠ABC;∠VAB;∠VAC;∠VBC都是直角.
所以三棱錐最多四個(gè)面都是直角三角形.
故選:A
點(diǎn)評(píng) 本題重點(diǎn)考查線(xiàn)面垂直的判定與性質(zhì),考查學(xué)生的探究能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3$\sqrt{3}$ | B. | -3$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{5}$ | D. | -$\frac{\sqrt{3}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,+∞) | B. | $(\frac{8}{3},+∞)$ | C. | $(\frac{4}{3},+∞)$ | D. | $(\frac{10}{9},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{5}+1}}{2}$ | B. | $\frac{{\sqrt{2}+1}}{2}$ | C. | $\sqrt{2}+1$ | D. | $\sqrt{5}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=\sqrt{x^2}$和$y=\root{3}{x^3}$ | B. | y=|1-x|和$y=\sqrt{{{({x-1})}^2}}$ | ||
C. | $y=\frac{{{x^2}-1}}{x-1}$和y=x+1 | D. | y=x0和y=1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com