已知拋物線的頂點坐標為原點,對稱軸為x軸,且與圓x2+y2=16相交的公共弦長等于4
3
,則這個拋物線的方程為
 
考點:拋物線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:設出拋物線方程,利用拋物線與圓x2+y2=16相交的公共弦長等于4
3
,確定弦的端點的坐標,代入拋物線方程,可得結論.
解答: 解:由題意,開口向右時,設拋物線方程為y2=2px(p>0)
∵拋物線與圓x2+y2=16相交的公共弦長等于4
3

∴弦的端點的坐標為(2,±2
3

代入拋物線方程可得4p=12,∴p=3,∴拋物線方程為y2=6x;
同理可得開口向左時,拋物線方程為y2=-6x.
故答案為:y2=6x或y2=-6x.
點評:本題考查拋物線方程,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-a(x-1),其中,a∈R,e是自然對數(shù)的底數(shù).
(1)當a=-1時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調性,并寫出相應的單調區(qū)間;
(3)已知b∈R,若函數(shù)f(x)≥b對任意x∈R都成立,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1nx一ax2+(2-a)x,試討論函數(shù)f(x)的單凋性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),過其右焦點F且與該雙曲線一漸近線平行的直線分別與雙曲線的右支和另一條漸近線交于A、B兩點,且
FB
=2
FA
,則雙曲線的離心率為(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點A(-
2
2
,
3
2
)
,離心率為
2
2
,點F1,F(xiàn)2分別為其左右焦點.
(1)求橢圓C的標準方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點P,Q,且
OP
OQ
?若存在,求出該圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在梯形ABCD中,
AB
=2
DC
,
.
BC
 
.
=6,P為梯形ABCD所在平面上一點,且滿足
AP
+
BP
+4
DP
=
0
,
DA
CB
=
.
DA
 
.
.
DP
 
.
,Q為邊AD上的一個動點,則
.
PQ
 
.
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線C:y2=4x的焦點為F,A,B是C上的兩點,且AF⊥FB,弦AB中點M在C的準線上的射影為M′,則
|AB|
|MM′|
的最小值為( 。
A、
3
B、
2
2
C、
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,某住宅小區(qū)有一個矩形休閑廣場ABCD,其中AB=40 米,BC=30 米,根據(jù)小區(qū)業(yè)主建議,需將其擴大成矩形區(qū)域EFGH,要求A、B、C、D四個點分別在矩形EFGH的四條邊(不含頂點)上.設∠BAE=θ,EF長為y米.
(1)將y表示成θ的函數(shù);
(2)求矩形區(qū)域EFGH的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若“任意x∈R,不等式|x-1|-|x+1|>a”為假命題,則實數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習冊答案