7.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,若$\overrightarrow{a}$•$\overrightarrow$>0,則△ABC的形狀為(  )
A.直角三角形B.銳角三角形C.鈍角三角形D.不能確定

分析 利用向量的數(shù)量積求出B的余弦函數(shù)值,即可判斷三角形的形狀.

解答 解:在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,若$\overrightarrow{a}$•$\overrightarrow$>0,
可得$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{AB}$•$\overrightarrow{BC}$=-|$\overrightarrow{AB}$|•$\overrightarrow{|BC}|$cos$<\overrightarrow{BA},\overrightarrow{BC}>$>0,
可知cosB<0,
△ABC的形狀為鈍角三角形.
故選:C.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的元素三角形的形狀的判斷,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.△ABC的面積為S,α是三角形的內(nèi)角,O是平面ABC內(nèi)一點(diǎn),且滿足$\sqrt{2}$$\overrightarrow{OA}$+sinα$\overrightarrow{OB}$+cosα$\overrightarrow{OC}$=$\overrightarrow{0}$,則下列判斷正確的是( 。
A.S△AOC的最小值為$\frac{1}{2}$SB.SAOB的最小值為($\sqrt{2}$-1)S
C.S△AOC+S△AOB的最大值為$\frac{1}{2}$SD.S△BOC的最大值為($\sqrt{2}$-1)S

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.關(guān)于正切函數(shù)的單調(diào)性,給出下列命題:
①正切函數(shù)y=tanx是增函數(shù);
②正切函數(shù)y=tanx在其定義域上是增函數(shù);
③正切函數(shù)y=tanx在每一個(gè)開(kāi)區(qū)間(-$\frac{π}{2}$+kπ、$\frac{π}{2}$+kπ)(k∈z)內(nèi)都是增函數(shù);
④正切函數(shù)y=tanx在區(qū)間(0,$\frac{π}{2}$)∪($\frac{π}{2}$,π)上是增函數(shù).
其中.真命題是③.(填所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)n∈N,且n>0,試用數(shù)學(xué)歸納法證明1+21+22+23+…+23n-1 能被31整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若彈簧掛著的小球做簡(jiǎn)諧運(yùn)動(dòng),時(shí)間t(s)與小球相對(duì)于平衡位置(即靜止時(shí)的位置)的高度h(cm)之間的函數(shù)關(guān)系式是h=2sin(ωt+$\frac{π}{4}$),t∈[0,+∞),其圖象如圖所示.
(1)求ω(ω>0)的值;
(2)小球開(kāi)始運(yùn)動(dòng)(即t=0)時(shí)的位置在哪里?
(3)小球運(yùn)動(dòng)的最高點(diǎn)、最低點(diǎn)與平衡位置的距離分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)右頂為A,點(diǎn)P在橢圓上,O為坐標(biāo)原點(diǎn),且OP⊥PA,求橢圓的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是不共線的兩個(gè)向量,給出下列四組向量:①$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$;②$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$與$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$;③$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$與4$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$.其中能作為平面內(nèi)所有向量的一組基底的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知某產(chǎn)品的次品率為0.04,現(xiàn)要抽取這種產(chǎn)產(chǎn)品進(jìn)行檢驗(yàn),則要檢查到次品的概率達(dá)到0.95以上,至少要選74個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.寫出一個(gè)系數(shù)矩陣為單位矩陣,解為1行4列矩陣(1 2 3 4)的線性方程組.

查看答案和解析>>

同步練習(xí)冊(cè)答案