分析 當(dāng)n=1時(shí),1+21+22+23+…+25n-1=31能被31整除,假設(shè)n=k時(shí),1+21+22+23+…+25n-1 能被31整除,則則n=k+1時(shí),1+21+22+23+…+23(k+1)-1也能被31整除,綜合可得結(jié)論.
解答 證明:當(dāng)n=1時(shí),1+21+22+23+…+25n-1=1+21+22+23+24=25-1=31能被31整除,
假設(shè)n=k時(shí),1+21+22+23+…+25n-1 能被31整除,
不妨令1+21+22+23+…+25k-1=31a,a∈Z,
則n=k+1時(shí),
1+21+22+23+…+23(k+1)-1
=1+21+22+23+…+25k-1+25k+25k+1+25k+2+25k+3+25k+4
=31a+25k+25k+1+25k+2+25k+3+25k+4
=31a+25k(1+21+22+23+24)
=31a+31•25k也能被31整除,
綜上所述n∈N,且n>0時(shí),1+21+22+23+…+23n-1 能被31整除.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是數(shù)學(xué)歸納法,熟練掌握數(shù)學(xué)歸納的證明步驟是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{20\sqrt{2}}}{3}$ | B. | $\frac{{20\sqrt{3}}}{3}$ | C. | $\frac{{50\sqrt{2}}}{9}$ | D. | $\frac{{50\sqrt{3}}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 銳角三角形 | C. | 鈍角三角形 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com