13.已知函數(shù)f(x)=sinωx+cos(ωx+$\frac{π}{6}$)(ω>0)的最小正周期T=4π
(I)求ω;
(Ⅱ)當(dāng)x∈[-π,π]時(shí),求函數(shù):y=f(x)-$\frac{1}{2}$的零點(diǎn).

分析 (I)由條件利用三角恒等變換函數(shù)f(x)的解析式,為f(x)=sin(ωx+$\frac{π}{3}$),由函數(shù)f(x)的最小正周期T=$\frac{2π}{ω}$=4π,求得ω=$\frac{1}{2}$的值.
(Ⅱ)當(dāng)條件求得sin($\frac{1}{2}$x+$\frac{π}{3}$)=$\frac{1}{2}$,可得 $\frac{1}{2}$x+$\frac{π}{3}$=2kπ+$\frac{π}{6}$ 或 $\frac{1}{2}$x+$\frac{π}{3}$=2kπ+$\frac{5π}{6}$,由此求得x的值.

解答 解:(I)函數(shù)f(x)=sinωx+cos(ωx+$\frac{π}{6}$)=sinωx+$\frac{\sqrt{3}}{2}$cosωx-$\frac{1}{2}$sinωx
=$\frac{1}{2}$sinωx++$\frac{\sqrt{3}}{2}$cosωx=sin(ωx+$\frac{π}{3}$),
且函數(shù)f(x)的最小正周期T=$\frac{2π}{ω}$=4π,
∴ω=$\frac{1}{2}$,f(x)=sin($\frac{1}{2}$x+$\frac{π}{3}$).
(Ⅱ)當(dāng)x∈[-π,π]時(shí),由f(x)-$\frac{1}{2}$,
可得sin($\frac{1}{2}$x+$\frac{π}{3}$)=$\frac{1}{2}$,
∴$\frac{1}{2}$x+$\frac{π}{3}$=2kπ+$\frac{π}{6}$ 或 $\frac{1}{2}$x+$\frac{π}{3}$=2kπ+$\frac{5π}{6}$,
求得x=4kπ-$\frac{π}{3}$,或 x=4kπ+π,k∈z,
∵x∈[-π,π],
∴x=-$\frac{π}{3}$,或x=π.

點(diǎn)評(píng) 本題主要考查三角恒等變換,根據(jù)三角函數(shù)的值求角,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若直線ax+by-1=0(a•b>0)平分圓C:x2+y2-2x-4y+1=0,則$\frac{1}{a}$+$\frac{1}$的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=$\frac{1}{2}$cosωx對(duì)任意的x∈R,都有f($\frac{π}{6}$-x)=f($\frac{π}{6}$+x),若函數(shù)g(x)=-2+3sinωx,則g($\frac{π}{6}$)的值是( 。
A.1B.-5或3C.-2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-1(n=1,2,…)
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn=$\frac{{2}^{n}}{({a}_{n}+1)({a}_{n+1}+1)}$,求數(shù)列{bn}的前n項(xiàng)和Tn,并求使Tn$<\frac{2014}{2015}$成立的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\frac{2}{x+1}$,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)An(n,f(n))(n∈N*),向量$\overrightarrow m=({0,1}),{θ_n}$是向量${\overrightarrow{OA}_n}$與$\overrightarrow m$的夾角,則$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+\frac{{cos{θ_3}}}{{sin{θ_3}}}+…+\frac{{cos{θ_{2015}}}}{{sin{θ_{2015}}}}$的值為$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.用輾轉(zhuǎn)相除法求294和84的最大公約數(shù),則所求最大公約數(shù)為 ( 。
A.21B.42C.84D.168

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2i}{1-i}$對(duì)應(yīng)的點(diǎn)的坐標(biāo)是(  )
A.(-1,1)B.(-1,-1)C.(1,-1)D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)p,q是兩個(gè)命題,則“p,q均為假命題”是“p∧q為假命題”的(  )條件.
A.充分不必要B.必要不充分
C.充分必要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,AC=2AB=2,BC=$\sqrt{3}$,P是△ABC內(nèi)部的一點(diǎn),若∠APB=∠BPC=∠CPA,則PA+PB+PC=$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案