9.圓心在y軸上,半徑為1,且過點(diǎn)(1,2)的圓的標(biāo)準(zhǔn)方程是x2+(y-2)2=1.

分析 由題意可設(shè)設(shè)圓心為(0,b),根據(jù)半徑為1的圓過點(diǎn)(1,2),求得b的值,可得圓的標(biāo)準(zhǔn)方程.

解答 解:設(shè)圓心在y軸上,半徑為1的圓的圓心為(0,b),因?yàn)榇藞A過點(diǎn)(1,2),
∴半徑為1=$\sqrt{{(1-0)}^{2}{+(2-b)}^{2}}$,求得b=2,故要求的圓的方程為x2+(y-2)2=1,
故答案為:x2+(y-2)2=1.

點(diǎn)評(píng) 本題主要考查求圓的標(biāo)準(zhǔn)方程的方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在x軸上與點(diǎn)A (-4,1,7)和點(diǎn)B(3,5,-2)等距離的點(diǎn)的坐標(biāo)為( 。
A.(-2,0,0)B.(-3,0,0)C.(3,0,0)D.(2,0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)$\frac{1+i}{1-i}$=( 。
A.iB.-iC.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某生態(tài)公園的平面圖呈長方形(如圖),已知生態(tài)公園的長AB=8(km),寬AD=4(km),M,N分別為長方形ABCD邊AD,DC的中點(diǎn),P,Q為長方形ABCD邊AB,BC(不含端點(diǎn))上的一點(diǎn).現(xiàn)公園管理處擬修建觀光車道P-Q-N-M-P,要求觀光車道圍成四邊形(如圖陰影部分)的面積為15(km2),設(shè)BP=x(km),BQ=y(km),
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)若B為公園入口,P,Q為觀光車站,觀光車站P位于線段AB靠近入口B的一側(cè).經(jīng)測(cè)算,每天由B入口至觀光車站P,Q乘坐觀光車的游客數(shù)量相等,均為1萬人,問如何確定觀光車站P,Q的位置,使所有游客步行距離之和最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某艦艇在A處測(cè)得一遇險(xiǎn)漁船在北偏東45°距離A處10海里的C處,此時(shí)得知,該漁船正沿南偏東75°方向以每小時(shí)9海里的速度向一小島靠近,艦艇時(shí)速為21海里,求艦艇追上漁船的最短時(shí)間(單位:小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+3y-6≥0}\\{3x+2y-9≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=4x+5y的最小值為( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列說法:
①分類變量A與B的隨機(jī)變量K2越大,說明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=1,$\overline{x}$=1,$\overline{y}$=3,
則a=1.正確的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式x-2y+4>0表示的區(qū)域在直線x-2y+4=0的( 。
A.左上方B.左下方C.右上方D.右下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}滿足:a1=1,${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+2}}$(n∈N*),則數(shù)列{an}的通項(xiàng)公式為(  )
A.${a_n}=\frac{2}{n+1}$B.${a_n}=\frac{1}{n-1}$C.${a_n}=\frac{n}{n+1}$D.${a_n}=\frac{1}{n+1}$

查看答案和解析>>

同步練習(xí)冊(cè)答案