如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率e=
5
5
,過(guò)F1的直線交橢圓于M、N兩點(diǎn),且△MNF2的周長(zhǎng)為4
5

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)AB是過(guò)橢圓E中心的任意弦,P是線段AB的垂直平分線與橢圓E的一個(gè)交點(diǎn),求△APB面積的最小值.
(Ⅰ)∵△MNF2周長(zhǎng)為4
5
,
∴4a=4
5
,
∴a=
5

∵離心率e=
5
5
,
∴c=1,
b=
a2-c2
=2,
∴橢圓E的方程為
x2
5
+
y2
4
=1
;
(Ⅱ)直線AB的方程為y=kx,線段AB的垂直平分線為y=-
1
k
x,
y=-
1
k
x與橢圓方程聯(lián)立,可得x=±
20k2
4k2+5

∴可得P(
20k2
4k2+5
,-
1
k
20k2
4k2+5
),
P到直線AB的距離為d=|
k2+1
k
20k2
4k2+5
|
y=kx與橢圓方程聯(lián)立,可得x=±
20
4+5k2

∴|AB|=
1+k2
•2
20
4+5k2

∴S△ABP=
1
2
|AB|d|=
1
2
1+k2
•2
20
4+5k2
•|
k2+1
k
20k2
4k2+5
|
令t=k2+1(t≥1),則S△ABP=20•
t2
(5t-1)(4t+1)
=20•
1
-(
1
t
-
1
2
)2+
81
4
,
∵t≥1,
∴t=1,即k=0時(shí),△APB面積的最小值為2
5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線的方程為5x2-4y2=20兩個(gè)焦點(diǎn)為F1,F(xiàn)2
(1)求此雙曲線的焦點(diǎn)坐標(biāo)和漸近線方程;
(2)若橢圓與此雙曲線有共同的焦點(diǎn),且有一公共點(diǎn)P滿足|PF1|•|PF2|=6,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,過(guò)點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
3
2

(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問(wèn):是否存在k的值,使以CD為直徑的圓過(guò)E點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的兩頂點(diǎn)為A(
2
,0)
,B(0,1),該橢圓的左右焦點(diǎn)分別是F1,F(xiàn)2
(1)在線段AB上是否存在點(diǎn)C,使得CF1⊥CF2?若存在,請(qǐng)求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(2)設(shè)過(guò)F1的直線交橢圓于P,Q兩點(diǎn),求△PQF2面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線y=x2上的點(diǎn)到直線2x+y+4=0的最短距離是( 。
A.
5
5
B.
2
5
5
C.
3
5
5
D.
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C:x2=2py過(guò)點(diǎn)P(1,
1
2
)
,直線l交C于A,B兩點(diǎn),過(guò)點(diǎn)P且平行于y軸的直線分別與直線l和x軸相交于點(diǎn)M,N.
(1)求p的值;
(2)是否存在定點(diǎn)Q,當(dāng)直線l過(guò)點(diǎn)Q時(shí),△PAM與△PBN的面積相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某圓錐曲線有下列信息:
①曲線是軸對(duì)稱圖形,且兩坐標(biāo)軸都是對(duì)稱軸;
②焦點(diǎn)在x軸上且焦點(diǎn)到坐標(biāo)原點(diǎn)的距離為1;
③曲線與坐標(biāo)軸的交點(diǎn)不是兩個(gè);
④曲線過(guò)點(diǎn)A(1,
3
2
).
(1)判斷該圓錐曲線的類(lèi)型并求曲線的方程;
(2)點(diǎn)F是改圓錐曲線的焦點(diǎn),點(diǎn)F′是F關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn),點(diǎn)P為曲線上的動(dòng)點(diǎn),探求以|PF|以及|PF|•|PF′|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C:x2=2py(p>0)上一點(diǎn)A(m,4)到其焦點(diǎn)F的距離為
17
4

(1)求P與m的值;
(2)若直線l過(guò)焦點(diǎn)F交拋物線于P,Q兩點(diǎn),且|PQ|=5,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,橢圓C上的點(diǎn)到左焦點(diǎn)F距離的最小值與最大值之積為1.
(1)求橢圓C的方程;
(2)直線l過(guò)橢圓C內(nèi)一點(diǎn)M(m,0),與橢圓C交于P、Q兩點(diǎn).對(duì)給定的m值,若存在直線l及直線母x=-2上的點(diǎn)N,使得△PNQ的垂心恰為點(diǎn)F,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案