設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S5=10,S10=30,則S15=
 
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的前n項(xiàng)和公式由已知條件求出首項(xiàng)和公差,由此能求出結(jié)果.
解答: 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,若S5=10,S10=30,
5a1+
5×4
2
d=10
10a1+
10×9
2
d=30
,解得a1=
6
5
,d=
2
5
,
S15=15a1+
15×14
2
d
=60.
故答案為:60.
點(diǎn)評(píng):本題考查等差數(shù)列的前15項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l1:x+y-2
2
=0與直線l2
x=
2
2
t
y=
2
2
t
(t為參數(shù))的交點(diǎn)到原點(diǎn)O的距離是( 。
A、1
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(7,1)作圓x2+y2=25的切線,求切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某幾何體的三視圖,它的正視圖和側(cè)視圖均為矩形,俯視圖為正三角形(長(zhǎng)度單位:cm)
(Ⅰ)試說出該幾何體是什么幾何體;
(Ⅱ)按實(shí)際尺寸畫出該幾何體的直觀圖,并求它的表面積及體積.(只要做出圖形,不要求寫作法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-
a
x
,g(x)=ex(ax+1),其中a為實(shí)數(shù).
(1)若f(x)在(1,+∞)上是單調(diào)增函數(shù),且g(x)在(-∞,1)上有最大值,求a的取值范圍;
(2)若g(x)在(1,2)上不是單調(diào)函數(shù),試求f(x)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式92x-1<3
3
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0),過A(1,
6
3
)和點(diǎn)B(0,-1).
(1)求橢圓G的方程;
(2)設(shè)過點(diǎn)P(0,
3
2
)的直線l與橢圓G交于M,N兩點(diǎn),且|BM|=|BN|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點(diǎn),且|AB|=4,橢圓C的離心率為
1
2
,直線l:x=4.
(1)求橢圓方程;
(2)設(shè)M是橢圓C上異于A,B的一點(diǎn),直線AM交l于點(diǎn)P,以MP為直徑的圓記為E.
①若M恰好是橢圓C的上頂點(diǎn),求E截直線PB所得的弦長(zhǎng);
②設(shè)E與直線MB交于點(diǎn)Q,試證明:直線PQ與x軸的交點(diǎn)R為定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時(shí)滿足以下4個(gè)條件的集合記作Ak:(1)所有元素都是正整數(shù);(2)最小元素為1;(3)最大元素為2014;(4)各個(gè)元素可以從小到大排成一個(gè)公差為k(k∈N*)的等差數(shù)列.那么A33∪A61中元素的個(gè)數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案