【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè),在區(qū)間上的最大值;

(3)證明:對(duì)不等式成立.為自然對(duì)數(shù)的底數(shù))

【答案】(1)函數(shù)上單調(diào)遞增,在上單調(diào)遞減(2)(3)見解析

【解析】試題分析:(1)確定函數(shù)的定義域,求導(dǎo)數(shù),由導(dǎo)數(shù)的正負(fù)明確函數(shù)的單調(diào)區(qū)間;(2)對(duì)分類討論,確定函數(shù)上得單調(diào)性,從而可求函數(shù)的最大值;(3)先確定函數(shù)在上,恒有,即,結(jié)合(1)可證,從而可得,恒有,進(jìn)而可得結(jié)論.

試題解析:(1)的定義域?yàn)?/span>,

,得

當(dāng)時(shí), ;當(dāng)時(shí),

所以函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

(2)①當(dāng),即時(shí), 上單調(diào)遞增,

②當(dāng)時(shí), 上單調(diào)遞減,

③當(dāng),即時(shí), 上單調(diào)遞增,在上單調(diào)遞減,

(3)由(1)知,當(dāng)時(shí), ,所以在上,恒有,即且當(dāng)時(shí)等號(hào)成立.

因此,對(duì),恒有

,即

.即對(duì),不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線為軸,三角形面旋轉(zhuǎn)一周形成一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018衡水金卷(三)如圖所示,在三棱錐中,平面平面, , ,

I)證明: 平面;

II)若二面角的平面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過7”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是

A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某民營(yíng)企業(yè)生產(chǎn)兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖甲,產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖乙(注:利潤(rùn)與投資單位:萬元).

(1)分別將兩種產(chǎn)品的利潤(rùn)表示為投資(萬元)的函數(shù)關(guān)系式;

(2)該企業(yè)已籌集到10萬元資金,并全部投入兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了了解2018年當(dāng)?shù)鼐用窬W(wǎng)購(gòu)消費(fèi)情況,隨機(jī)抽取了100人,對(duì)其2018年全年網(wǎng)購(gòu)消費(fèi)金額(單位:千元)進(jìn)行了統(tǒng)計(jì),所統(tǒng)計(jì)的金額均在區(qū)間內(nèi),并按,,…,6組,制成如圖所示的頻率分布直方圖.

(1)求圖中的值;

(2)若將全年網(wǎng)購(gòu)消費(fèi)金額在20千元及以上者稱為網(wǎng)購(gòu)迷.結(jié)合圖表數(shù)據(jù),補(bǔ)全列聯(lián)表,并判斷是否有的把握認(rèn)為樣本數(shù)據(jù)中的網(wǎng)購(gòu)迷與性別有關(guān)系?說明理由;

合計(jì)

網(wǎng)購(gòu)迷

20

非網(wǎng)購(gòu)迷

45

合計(jì)

下面的臨界值表僅供參考:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

附: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn).用,分別表示烏龜和兔子所行的路程,為時(shí)間,則與故事情節(jié)相吻合的是(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)在傾斜角為的直線上,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的方程為.

(1)寫出的參數(shù)方程及的直角坐標(biāo)方程;

(2)設(shè)相交于兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,長(zhǎng)軸長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于,兩點(diǎn),坐標(biāo)原點(diǎn)在以為直徑的圓上,點(diǎn).試求點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案