【題目】平面上動點M到直線x=﹣1的距離比它到點F(2,0)的距離少1.
(1)求動點M的軌跡E的方程;
(2)已知點B(﹣1,0),設過點(1,0)的直線l與軌跡E交于不同的兩點P、Q,證明:x軸是∠PBQ的角平分線所在的直線.
【答案】
(1)解:因為點M到直線x=﹣1的距離比它到點(2,0)的距離小1,
所以點M到直線x=﹣2的距離等于它到點(2,0)的距離,
因此點M的軌跡為拋物線,方程為y2=8x
(2)解:將y=k(x﹣1)代入y2=8x中,
得k2x2﹣(2k2+8)x+k2=0,
由根與系數(shù)的關系得,x1+x2=2+ ,x1x2=1.
∴ + = =0,
∴ =﹣ ,
∴x軸是∠PBQ的解平分線.
k不存在時,結論同樣成立
【解析】(1)把直線x=﹣1向左平移一個單位變?yōu)閤=﹣2,此時點M到直線x=﹣2的距離等于它到點(2,0)的距離,即可得到點M的軌跡方程.(2)將y=k(x﹣1)代入y2=8x中,得k2x2﹣(2k2+8)x+k2=0,利用根與系數(shù)的關系,證明 + =0,即可證明結論.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, .過作一個平面使得平面.
(1)求平面將四棱錐分成兩部分幾何體的體積之比;
(2)若平面與平面之間的距離為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正三角形ABC的邊長為2,D、E、F分別是BC、CA、AB的中點.
(1)在三角形內(nèi)部隨機取一點P,求滿足|PB|≥1且|PC|≥1的概率;
(2)在A、B、C、D、E、F這6點中任選3點,記這3點圍成圖形的面積為ξ,求隨機變量ξ的分布列與數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列各題中p是q的什么條件.
(1)p:|x|=|y|,q:x=y;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四邊形的對角線互相平分,q:四邊形是矩形;
(4)p:圓x2+y2=r2(r>0)與直線ax+by+c=0相切,q:c2=(a2+b2)r2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】輸入x,求函數(shù)y=的值的程序框圖如圖C17所示.
(1)指出程序框圖中的錯誤之處并寫出正確的算法步驟.
(2)重新繪制程序框圖,并回答下面提出的問題.
①要使輸出的值為7,則輸入的x的值應為多少?
②要使輸出的值為正數(shù),則輸入的x應滿足什么條件?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,已知 平面,且四邊形為直角梯形, , , ,點, 分別是, 的中點.
(I)求證: 平面;
(Ⅱ)點是線段上的動點,當直線與所成角最小時,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列為等比數(shù)列,,公比為,且,為數(shù)列的前項和.
(1)若,求;
(2)若調(diào)換的順序后能構成一個等差數(shù)列,求的所有可能值;
(3)是否存在正常數(shù),使得對任意正整數(shù),不等式總成立?若存在,求出的范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列的前項和為,在同一個坐標系中,及的部分圖象如圖所示,則( ).
A. 當時,取得最大值 B. 當時,取得最大值
C. 當時,取得最小值 D. 當時,取得最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com