【題目】判斷下列各題中p是q的什么條件.
(1)p:|x|=|y|,q:x=y;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四邊形的對角線互相平分,q:四邊形是矩形;
(4)p:圓x2+y2=r2(r>0)與直線ax+by+c=0相切,q:c2=(a2+b2)r2.
【答案】見解析
【解析】
根據充要條件的定義,逐一判斷四個小題中和的關系,可得結論.
(1)∵|x|=|y|不能推出x=y,但x=y |x|=|y|,∴p是q的必要不充分條件.
(2)∵△ABC是直角三角形不能推出△ABC是等腰三角形,
△ABC是等腰三角形也不能推出△ABC是直角三角形,
∴p是q的既不充分也不必要條件.
(3)∵四邊形的對角線互相平分不能推出四邊形是矩形,
四邊形是矩形能推出四邊形的對角線互相平分,
∴p是q的必要不充分條件.
(4)若圓x2+y2=r2(r>0)與直線ax+by+c=0相切,則圓心(0,0)到直線ax+by+c=0的距離等于r,即r=,
∴c2=(a2+b2)r2;
反過來,若c2=(a2+b2)r2,則=r成立,
說明圓x2+y2=r2(r>0)的圓心(0,0)到直線ax+by+c=0的距離等于r,
即圓x2+y2=r2(r>0)與直線ax+by+c=0相切.故p是q的充要條件.
科目:高中數學 來源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在正方體ABCD-A1B1C1D中,S是B1D1的中點,E、F、G分別是BC、CD和SC的中點.求證:
(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,為正方體,給出以下五個結論:
① 平面;
② ⊥平面;
③ 與底面所成角的正切值是;
④ 二面角的正切值是;
⑤ 過點且與異面直線 和 均成70°角的直線有4條.
其中,所有正確結論的序號為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面上動點M到直線x=﹣1的距離比它到點F(2,0)的距離少1.
(1)求動點M的軌跡E的方程;
(2)已知點B(﹣1,0),設過點(1,0)的直線l與軌跡E交于不同的兩點P、Q,證明:x軸是∠PBQ的角平分線所在的直線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.已知曲線C的參數方程為: (φ為參數),直線l的極坐標方程為ρ(cosθ+sinθ)=4.
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)若點P在曲線C上,點Q在直線l上,求線段PQ的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在(0,+∞)上的函數f(x)=a(x+ )﹣|x﹣ |(a∈R).
(1)當a= 時,求f(x)的單調區(qū)間;
(2)若f(x)≥ x對任意的x>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,已知曲線,將曲線上所有點橫坐標,縱坐標分別伸長為原來的倍和倍后,得到曲線
(1)試寫出曲線的參數方程;
(2)在曲線上求點,使得點到直線的距離最大,并求距離最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com