科目:高中數(shù)學(xué) 來源: 題型:
x2 |
2b2 |
y2 |
b2 |
1 |
8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
2b2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線C的一個焦點為F(,0),對應(yīng)于這個焦點的準(zhǔn)線方程為x=-.
(1)寫出拋物線C的方程;
(2)過F點的直線與曲線C交于A、B兩點,O點為坐標(biāo)原點,求△AOB重心G的軌跡方程;
(3)點P是拋物線C上的動點,過點P作圓(x-3)2+y2=2的切線,切點分別是M,N.當(dāng)P點在何處時,|MN|的值最?求出|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)b>0,橢圓方程為,拋物線方程為.如圖4所示,過點F(0,b+2)作x軸的平行線,與拋物線在
第一象限的交點為G.已知拋物線在點G的切線經(jīng)
過橢圓的右焦點.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)A,B分別是橢圓長軸的左、右端點,試探究在
拋物線上是否存在點P,使得△ABP為直角三角形?
若存在,請指出共有幾個這樣的點?并說明理由
(不必具體求出這些點的坐標(biāo)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線C的一個焦點為F(,0),對應(yīng)于這個焦點的準(zhǔn)線方程為x=-.
(1)寫出拋物線C的方程;
(2)過F點的直線與曲線C交于A、B兩點,O點為坐標(biāo)原點,求△AOB重心G的軌跡方程;
(3)點P是拋物線C上的動點,過點P作圓(x-3)2+y2=2的切線,切點分別是M,N.當(dāng)P點在何處時,|MN|的值最。壳蟪鰘MN|的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com