【題目】設函數(shù)fx)=2cos2xcos2x).

1)求fx)的周期和最大值;

2)已知△ABC中,角A.B.C的對邊分別為AB,C,若fπA)=b+c2,求a的最小值.

【答案】(1)周期為π,最大值為2.(2)

【解析】

1)利用倍角公式降冪,展開兩角差的余弦,將函數(shù)的關系式化簡余弦型函數(shù),可求出函數(shù)的周期及最值;

2)由fπA,求解角A,再利用余弦定理和基本不等式求a的最小值.

1)函數(shù)fx)=2cos2xcos2x

1+cos2x

cos2x+1

∵﹣1cos2x)≤1,

T,fx)的最大值為2;

2)由題意,fπA)=f(﹣A)=cos(﹣2A+1,

即:cos(﹣2A,

又∵0Aπ

2A

∴﹣2A,即A

在△ABC中,b+c2,cosA,

由余弦定理,a2b2+c22bccosA=(b+c2bc,

由于:bc,當bc1時,等號成立.

a2413,即a

a的最小值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線為參數(shù)),為參數(shù)).

(1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

(2)若上的點對應的參數(shù)為上的動點,求的中點到直線為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求經(jīng)過直線L13x + 4y – 5 = 0與直線L22x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程

1)與直線2x + y + 5 = 0平行 ;

2)與直線2x + y + 5 = 0垂直;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 ,其中.函數(shù)的圖象過點,點與其相鄰的最高點的距離為4

(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;

(Ⅱ)計算的值;

(Ⅲ)設函數(shù),試討論函數(shù)在區(qū)間 [0,3] 上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設F1 , F2是雙曲線C: (a>0,b>0)的兩個焦點,P是C上一點,若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的離心率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù),.

1)若上單調(diào)遞增,求正數(shù)的最大值;

2)若函數(shù)內(nèi)恰有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,將一個各面都涂了油漆的正方體,切割為125個同樣大小的小正方體,經(jīng)過攪拌后,從中隨機取一個小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn , 已知a1=1, ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有

查看答案和解析>>

同步練習冊答案