分析 (1)所有的選法共有3×3=9種,而他們選擇相同顏色運(yùn)動(dòng)服的選法共有3種,由此求得他們選擇相同顏色運(yùn)動(dòng)服的概率.
(2)由題意知本題是一個(gè)幾何概型,試驗(yàn)發(fā)生包含的所有事件是在平面區(qū)域 {(x,y)|$\left\{\begin{array}{l}{0≤x≤3}\\{0≤y≤4}\end{array}\right.$}內(nèi),做出面積,滿足條件的事件是三角形OAD的區(qū)域,做出面積,根據(jù)幾何概型公式得到結(jié)果.
解答 解:(1)甲、乙兩名運(yùn)動(dòng)員各自等可能地從紅、白、藍(lán)3種顏色的運(yùn)動(dòng)服中選擇1種的所有可能情況為(紅,白),(白,紅),(紅,藍(lán)),(藍(lán),紅),(白,藍(lán)),(藍(lán),白),(紅,紅),(白,白),(藍(lán),藍(lán)),共9種,他們選擇相同顏色運(yùn)動(dòng)服的所有可能情況為(紅,紅),(白,白),(藍(lán),藍(lán)),共3種.故所求概率為P=$\frac{3}{9}$=$\frac{1}{3}$.
(2)依條件可知,點(diǎn)M均勻地分布在平面區(qū)域{(x,y)|$\left\{\begin{array}{l}{0≤x≤3}\\{0≤y≤4}\end{array}\right.$}內(nèi),該平面區(qū)域的圖形為圖中矩形OABC圍成的區(qū)域,面積為S=3×4=12.
而所求事件構(gòu)成的平面區(qū)域?yàn)閧(x,y)|$\left\{\begin{array}{l}{\stackrel{x+2y-3≤0}{x≥0}}\\{y≥0}\end{array}\right.$},其圖形如圖中的三角形OAD
(陰影部分).
又直線x+2y-3=0與x軸、y軸的交點(diǎn)分別為A(3,0),D(0,$\frac{3}{2}$),
則三角形OAD的面積為S1=$\frac{1}{2}$×3×$\frac{3}{2}$=$\frac{9}{4}$.
故所求事件的概率為P=$\frac{S1}{S}$=$\frac{\frac{9}{4}}{12}$=$\frac{3}{16}$.
點(diǎn)評(píng) 本題主要考查相互獨(dú)立事件的概率乘法公式,幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件A的基本事件對(duì)應(yīng)的“幾何度量”N(A),再求出總的基本事件對(duì)應(yīng)的“幾何度量”N,最后根據(jù)P=$\frac{N(A)}{N}$求解,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1+3i | B. | -1+2i | C. | $\sqrt{10}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p1 | B. | p1∧p2 | C. | p2∧p3 | D. | p1∧(¬p3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com