5.小明在“歐洲七日游”的游玩中對某著名建筑物的景觀記憶猶新,現(xiàn)繪制該建筑物的三視圖如圖所示,若網(wǎng)格紙上小正方形的邊長為1,則小明繪制的建筑物的體積為(  )
A.16+8πB.64+8πC.64+$\frac{8π}{3}$D.16+$\frac{8π}{3}$

分析 由三視圖可知:該幾何體由一個圓錐、一個圓柱及一個正方體由上而下拼接而成的.利用體積計(jì)算公式即可得出.

解答 解:由三視圖可知:該幾何體由一個圓錐、一個圓柱及一個正方體由上而下拼接而成的.
故所求的體積V=$\frac{1}{3}×π×{1}^{2}$+π×12×2+43=64+$\frac{8π}{3}$.
故選:C.

點(diǎn)評 本題考查了圓錐、圓柱、正方體的三視圖及其體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如表的列聯(lián)表:
喜愛打籃球不喜愛打籃球合計(jì)
男生5
女生[來10
合計(jì)50
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為$\frac{3}{5}$.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.
參考數(shù)據(jù):χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
當(dāng)χ2≤2.706時(shí),沒有充分的證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為變量A,B是沒有關(guān)聯(lián)的;
當(dāng)χ2>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)χ2>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)χ2>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,若曲線C的極坐標(biāo)方程為ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.直線l與曲線C相交于A、B兩點(diǎn),則|AB|=$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在半球O的直徑AB的延長線上取一點(diǎn)P,作PC的切半圓O于點(diǎn)C,又經(jīng)過P任作一直線交半圓O于點(diǎn)M、N,過C作CD⊥AB,垂足為D
(1)求證:M、O、D、N四點(diǎn)共圓;
(2)求證:∠MDC=∠NDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,長軸長為2$\sqrt{3}$,直線l:y=kx+m交橢圓于不同的兩點(diǎn)A,B.
(1)求橢圓的方程;
(2)若以AB為直徑的圓恰過坐標(biāo)原點(diǎn)O,證明:原點(diǎn)O到直線l的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知(2x+$\frac{1}{{x}^{2}}$+a)6(a∈Z)的展開式中常數(shù)項(xiàng)為1,則(m+an)8的展開式中含m3n5的項(xiàng)的系數(shù)為-56.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3cosθ}\\{y=3+3sinθ}\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+at}\\{y=1+t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程以及直線l的普通方程;
(2)若直線l與曲線C交于B、D兩點(diǎn),當(dāng)|BD|取到最小值時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知四棱錐P-ABCD的三視圖如圖所示,該四棱錐(  )
A.四個側(cè)面的面積相等
B.四個側(cè)面中任意兩個的面積不相等
C.四個側(cè)面中面積最大的側(cè)面的面積為6
D.四個側(cè)面中面積最大的側(cè)面的面積為2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,點(diǎn)F到直線ax+by=0的距離為$\frac{2\sqrt{5}}{5}$,橢圓E的離心率為$\frac{2\sqrt{2}}{3}$,過點(diǎn)F的直線11交橢圓E于A,B兩點(diǎn),過F作直線l2交橢圓E于C、D兩點(diǎn),且l1⊥l2
(I)求橢圓E的方程;
(Ⅱ)求四邊形ACBD面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案