【題目】2019冠狀病毒病(CoronaVirus Disease2019COVID-19))是由新型冠狀病毒(2019-nCoV)引發(fā)的疾病,目前全球感染者以百萬(wàn)計(jì),我國(guó)在黨中央、國(guó)務(wù)院、中央軍委的堅(jiān)強(qiáng)領(lǐng)導(dǎo)下,已經(jīng)率先控制住疫情,但目前疫情防控形勢(shì)依然嚴(yán)峻,湖北省中小學(xué)依然延期開(kāi)學(xué),所有學(xué)生按照停課不停學(xué)的要求,居家學(xué)習(xí).小李同學(xué)在居家學(xué)習(xí)期間,從網(wǎng)上購(gòu)買(mǎi)了一套高考數(shù)學(xué)沖刺模擬試卷,快遞員計(jì)劃在下午400500之間送貨到小區(qū)門(mén)口的快遞柜中,小李同學(xué)父親參加防疫志愿服務(wù),按規(guī)定,他換班回家的時(shí)間在下午430500,則小李父親收到試卷無(wú)需等待的概率為(

A.B.C.D.

【答案】C

【解析】

根據(jù)題意,列出不等式組,由線性規(guī)劃求幾何概型問(wèn)題,屬綜合基礎(chǔ)題.

記快遞員講快遞送到小區(qū)的時(shí)刻為x﹐小李同學(xué)父親到小區(qū)時(shí)刻為y

則所有事件構(gòu)成區(qū)域?yàn)?/span>,

小李同學(xué)父親收到快遞無(wú)需等待為事件A,則事件A構(gòu)成區(qū)域滿足,

根據(jù)題意,作圖如下:

數(shù)形結(jié)合可知,所有基本事件可表示平面區(qū)域,事件可表示平面區(qū)域,

又因?yàn)?/span>,,

所以小李同學(xué)父親收到快遞無(wú)需等待的概率.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,角AB,C的對(duì)邊分別為a,bc,且2ccosB2a+b

1)求角C的大小;

2)若ABC的面積等于,求ab的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測(cè)試中的成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績(jī)分析.

①甲同學(xué)的成績(jī)折線圖具有較好的對(duì)稱性,故平均成績(jī)?yōu)?30分;

②根據(jù)甲同學(xué)成績(jī)折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績(jī)?cè)趨^(qū)間內(nèi);

③乙同學(xué)的數(shù)學(xué)成績(jī)與測(cè)試次號(hào)具有比較明顯的線性相關(guān)性,且為正相關(guān);

④乙同學(xué)連續(xù)九次測(cè)驗(yàn)成績(jī)每一次均有明顯進(jìn)步.

其中正確的個(gè)數(shù)為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為t為參數(shù),.在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

1)求的普通方程;

2)若直線l的極坐標(biāo)方程為,其中滿足,若曲線的公共點(diǎn)均在l上,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體的棱長(zhǎng)為1,P是空間中任意一點(diǎn),下列正確命題的個(gè)數(shù)是(

①若P為棱中點(diǎn),則異面直線APCD所成角的正切值為;

②若P在線段上運(yùn)動(dòng),則的最小值為;

③若P在半圓弧CD上運(yùn)動(dòng),當(dāng)三棱錐的體積最大時(shí),三棱錐外接球的表面積為;

④若過(guò)點(diǎn)P的平面與正方體每條棱所成角相等,則截此正方體所得截面面積的最大值為

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)討論的單調(diào)性;

2)設(shè),若上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了政府對(duì)過(guò)熱的房地產(chǎn)市場(chǎng)進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門(mén)對(duì)城市人和農(nóng)村人進(jìn)行了買(mǎi)房的心理預(yù)期調(diào)研,用簡(jiǎn)單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:

買(mǎi)房

不買(mǎi)房

糾結(jié)

城市人

5

15

農(nóng)村人

20

10

已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.

分別求樣本中城市人中的不買(mǎi)房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);

用獨(dú)立性檢驗(yàn)的思想方法說(shuō)明在這三種買(mǎi)房的心理預(yù)期中哪一種與城鄉(xiāng)有關(guān)?

參考公式:

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知點(diǎn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)設(shè)曲線與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)討論函數(shù)的零點(diǎn)個(gè)數(shù);

2)設(shè),證明:當(dāng)時(shí),.

查看答案和解析>>

同步練習(xí)冊(cè)答案