【題目】已知函數,.
(1)討論函數的零點個數;
(2)設,證明:當時,.
【答案】(1)時,無零點;時,2個零點(2)證明見解析
【解析】
分類討論,可得,分別,,利用導數求出函數的最值,即可判斷函數的零點的個數,
當時,不等式成立,當時,轉化為,設,,利用導數求出函數的最值即可證明.
當時,,
當時,,即,
設,
,
當且時,,即在,上單調遞減,
當時,,即在上單調遞遞增,
當時,,
當時,,當時,,
分別畫出與的圖象,如圖所示,
結合圖象可得,當時,與的圖象只有一個交點,
即函數只有一個零點,
當時,與的圖象沒有只有交點,即函數沒有零點,
當時,與的圖象有兩個交點,即函數有兩個零點.
證明:當時,,此時a取任何數都成立,
當時,要證當時,,只要證,
即證,
,
只要證,,
只要證,即證
設,,
,
令,,
,
當時,,函數在上單調遞增,
當時,,函數在上單調遞減,
,
,,,
存在,使得,
當時,,函數單調遞減,
當時,,函數單調遞增,
,
成立,
即當時,,
綜上所述:時,當時,.
科目:高中數學 來源: 題型:
【題目】2019冠狀病毒。CoronaVirus Disease2019(COVID-19))是由新型冠狀病毒(2019-nCoV)引發(fā)的疾病,目前全球感染者以百萬計,我國在黨中央、國務院、中央軍委的堅強領導下,已經率先控制住疫情,但目前疫情防控形勢依然嚴峻,湖北省中小學依然延期開學,所有學生按照停課不停學的要求,居家學習.小李同學在居家學習期間,從網上購買了一套高考數學沖刺模擬試卷,快遞員計劃在下午4:00~5:00之間送貨到小區(qū)門口的快遞柜中,小李同學父親參加防疫志愿服務,按規(guī)定,他換班回家的時間在下午4:30~5:00,則小李父親收到試卷無需等待的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在邊長為2的等邊中,分別為邊的中點,將AED沿折起,使得 , ,得到如圖2的四棱錐A-BCDE,連結,且與交于點.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自由購是通過自助結算方式購物的一種形式. 某大型超市為調查顧客使用自由購的情況,隨機抽取了100人,統(tǒng)計結果整理如下:
20以下 | 70以上 | ||||||
使用人數 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)現隨機抽取 1 名顧客,試估計該顧客年齡在且未使用自由購的概率;
(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機抽取3人進一步了解情況,用表示這3人中年齡在的人數,求隨機變量的分布列及數學期望;
(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購的顧客贈送1個環(huán)保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環(huán)保購物袋.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為橢圓的右焦點,C的準線與E交于P,Q兩點,且.
(1)求E的方程;
(2)過E的左頂點A作直線l交E于另一點B,且BO(O為坐標原點)的延長線交E于點M,若直線AM的斜率為1,求l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】阿基米德是古希臘偉大的哲學家、數學家、物理學家,對幾何學、力學等學科作出過卓越貢獻.為調查中學生對這一偉大科學家的了解程度,某調查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.
調查結果如下:
0項 | 1項 | 2項 | 3項 | 4項 | 5項 | 5項以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列表,并判斷是否由的把握認為.了解阿基米德與選擇文理科有關?
比較了解 | 不太了解 | 合計 | |
理科生 | p> | ||
文科生 | |||
合計 |
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(i)求抽取的文科生和理科生的人數;
(ii)從10人的樣本中隨機抽取兩人,求兩人都是文科生的概率.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校團委對“學生性別與中學生追星是否有關”作了一次調查,利用列聯(lián)表,由計算得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
得到正確結論是( )
A. 有99%以上的把握認為“學生性別與中學生追星無關”
B. 有99%以上的把握認為“學生性別與中學生追星有關”
C. 在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星無關”
D. 在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星有關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代勞動人民在筑城、筑堤、挖溝、挖渠、建倉、建囤等工程中,積累了豐富的經驗,總結出了一套有關體積、容積計算的方法,這些方法以實際問題的形式被收入我國古代數學名著《九章算術》中.《九章算術》將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,如圖所示的陽馬三視圖,則它的體積為( )
A.B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在新高考改革中,打破了文理分科的“”模式,不少省份采用了“”,“”,“”等模式.其中“”模式的操作又更受歡迎,即語數外三門為必考科目,然后在物理和歷史中選考一門,最后從剩余的四門中選考兩門.某校為了了解學生的選科情況,從高二年級的2000名學生(其中男生1100人,女生900人)中,采用分層抽樣的方法從中抽取n名學生進行調查.
(1)已知抽取的n名學生中含男生110人,求n的值及抽取到的女生人數;
(2)在(1)的情況下對抽取到的n名同學“選物理”和“選歷史”進行問卷調查,得到下列2×2列聯(lián)表.請將列聯(lián)表補充完整,并判斷是否有99%的把握認為選科目與性別有關?
選物理 | 選歷史 | 合計 | |
男生 | 90 | ||
女生 | 30 | ||
合計 |
(3)在(2)的條件下,從抽取的“選歷史”的學生中按性別分層抽樣再抽取5名,再從這5名學生中抽取2人了解選政治、地理、化學、生物的情況,求2人至少有1名男生的概率.
參考公式:.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com