分析 取AB的中點M,分別過A、B、M作準(zhǔn)線的垂線AP、BQ、MN,垂足分別為P、Q、N,作出圖形,利用拋物線的定義及梯形的中位線性質(zhì)可推導(dǎo),|MN|=$\frac{1}{2}$|AB|,從而可判斷圓與準(zhǔn)線的位置關(guān)系.橢圓、雙曲線,同理可得.
解答 解:取AB的中點M,分別過A、B、M作準(zhǔn)線的垂線AP、BQ、MN,垂足分別為P、Q、N,如圖所示:
由拋物線的定義可知,|AP|=|AF|,|BQ|=|BF|,
在直角梯形APQB中,|MN|=$\frac{1}{2}$(|AP|+|BQ|)=$\frac{1}{2}$(|AF|+|BF|)=$\frac{1}{2}$|AB|,
故圓心M到準(zhǔn)線的距離等于半徑,
∴以AB為直徑的圓與拋物線的準(zhǔn)線相切.
圓半徑為r,則r=$\frac{1}{2}$AB,分別過點A,B做右準(zhǔn)線的垂線,則構(gòu)成一個直角梯形,兩底長分別為$\frac{1}{e}$AF,$\frac{1}{e}$BF(e為離心率)
圓心到準(zhǔn)線的距離d為梯形的中位線長即$\frac{1}{2e}$(AF+BF)
∵橢圓0<e<1,∴d=$\frac{1}{2e}$(AF+BF)=$\frac{1}{2e}$AB>$\frac{1}{2}$AB=r,∴相離
雙曲線e>1,可得d<r,相交.
點評 本題考查直線與拋物線、橢圓、雙曲線的位置關(guān)系、直線圓的位置關(guān)系,考查拋物線、橢圓、雙曲線的定義,考查數(shù)形結(jié)合思想,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\sqrt{{x}^{2}}$和y=$(\sqrt{x})^{2}$ | B. | y=lg(x2-1)和y=lg(x+1)+lg(x-1) | ||
C. | y=logax2和y=2logx | D. | y=x和y=logaax |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3與7 | B. | 2與3 | C. | 2與7 | D. | 3與7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com