已知向量=(sin2x-1,cosx),=(1,2cosx),設(shè)函數(shù)
(1)求函數(shù) f(x)的最大值和最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
【答案】分析:(1)由已知中量=(sin2x-1,cosx),=(1,2cosx),函數(shù).根據(jù)平面向量的數(shù)量積公式,結(jié)合降冪公式(二倍角公式逆用)及輔助角公式,我們易將函數(shù)的解析式化為正弦型函數(shù)的形式,進(jìn)而根據(jù)正弦型函數(shù)的性質(zhì),我們可以求出函數(shù) f(x)的最大值和最小正周期;
(2)由(1)中函數(shù)的解析式,結(jié)合正弦型函數(shù)的單調(diào)性,我們易求出函數(shù)f(x)的單調(diào)遞增區(qū)間.
解答:解:(1)(2分)
=.        (3分)
,
∴fmax=2(6分)
最小正周期為.           (8分)
(2)由.           (12分)
,(14分)
函數(shù)遞增區(qū)間為(16分)
點(diǎn)評:本題考查的知識點(diǎn)是平面向量的數(shù)量積運(yùn)算,正弦型函數(shù)的圖象和性質(zhì),函數(shù)圖象的平移變換法則,其中根據(jù)平面向量的數(shù)量積公式和輔助角公式,求出函數(shù)的解析式是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知向量
a
=(sin2
π
6
x,cos2
π
6
x
),
b
=(sin2
π
6
x,-cos2
π
6
x
),g(x)=
a
b

(Ⅰ)求函數(shù)g(x)的解析式,并求其單調(diào)增區(qū)間;
(Ⅱ)若集合M={f(x)丨f(x)+f(x+2)=f(x+1),x∈R},試判斷g(x)與集合M的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,則sin2θ+cos2θ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos(x+
π
8
),sin2(x+
π
8
))
,
b
=(sin(x+
π
8
),1)
,函數(shù)f(x)=2
a
b
-1

(I)求函數(shù)f(x)的解析式,并求其最小正周期;
(II)求函數(shù)y=f(-
1
2
x)
圖象的對稱中心坐標(biāo)與對稱軸方程和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•長寧區(qū)一模)已知向量
a
=(sinx,1),
b
=(1,sin(x+
π
2
))
,設(shè)f(x)=
a
b

(1)求f(x)的單調(diào)遞增區(qū)間及最小正周期.
(2)若f(α)=
3
4
,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:遼寧省大連市、沈陽市2012屆高三第二次聯(lián)合考試數(shù)學(xué)文科試題 題型:044

已知向量m=(sin2+,sinx),n=(cos2x-sin2x,2sinx),函數(shù)f(x)=m·n

(Ⅰ)求函數(shù)f(x)的最小正周期;

(Ⅱ)若,求函數(shù)f(x)值域.

查看答案和解析>>

同步練習(xí)冊答案