11.已知i是虛數(shù)單位,若$\frac{1+3i}{i}$=b-i(b∈R),則b=3.

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等即可得出.

解答 解:∵$\frac{1+3i}{i}$=b-i(b∈R),
∴1+3i=i(b-i),化為1+3i=1+bi,∴b=3.
故答案為:3.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、復(fù)數(shù)相等,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.經(jīng)過點(diǎn)A(-2,1)且與x軸垂直的直線的方程是( 。
A.x=-2B.y=1C.y=-2D.x=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知i是虛數(shù)單位,則復(fù)數(shù)(1-i)2=( 。
A.-2B.2C.-2iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)列1,2,5,10,17,…的一個(gè)通項(xiàng)公式是(  )
A.n2-2n+2B.$\frac{{n}^{2}-n+2}{2}$C.2n-1D.2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.${A}_{5}^{3}$=( 。
A.10B.15C.60D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.拋物線的焦點(diǎn)F在x軸上,直線y=2與拋物線相交于點(diǎn)A,且|AF|=$\frac{5}{2}$,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對(duì)于函數(shù)f(x),若?a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長(zhǎng),則稱f(x)為”可構(gòu)造三角形函數(shù)“,已知函數(shù)f(x)=$\frac{2tanx+t}{tanx+1}$(0<x<$\frac{π}{2}$)是“可構(gòu)造三角形函數(shù)”,則實(shí)數(shù)t的取值范圍是(  )
A.[1,4]B.[1,2]C.[$\frac{1}{2}$,2]D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示的程序框圖,其運(yùn)行結(jié)果為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2sin2($\frac{π}{4}$-x)-$\sqrt{3}$cos2x.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)若f(x)<m+2對(duì)x∈[0,$\frac{π}{6}$]恒成立,求實(shí)數(shù)m的取值范圍;
(3)若$\frac{π}{3}$<α<$\frac{π}{2}$,且f(α)=$\frac{11}{5}$,求cos2α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案