18.復(fù)數(shù)z=($\frac{1+i}{-1+i}$)2016+i3(i為虛數(shù)單位)的共軛復(fù)數(shù)為( 。
A.1+2iB.1+iC.1-iD.1-2i

分析 利用復(fù)數(shù)的運(yùn)算法則、周期性、共軛復(fù)數(shù)的定義即可得出.

解答 解:∵$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=i,i4=1.
∴$z={({\frac{1+i}{-1+i}})^{2016}}+{i^3}={i^{2016}}-i=1-i$,
∴$\overline z=1+i$.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、周期性、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若曲線C1:x2+y2-2x=0與曲線C2:mx2-xy+mx=0有三個不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)C.(-∞,0)∪(0,+∞)D.(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取3件,則至少有2件一等品的概率是( 。
A.$\frac{3}{5}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,E、F分別為BC、CC1的中點(diǎn),則直線EF與平面BB1D1D所成角的正弦值為( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中常數(shù)項(xiàng)是( 。
A.-40B.-20C.40D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|0<x2<5},B={x|-3<x<2,x∈Z},則A∩B=( 。
A.{-2,-1,0,1}B.{-2,-1,1,2}C.{-2,-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若復(fù)數(shù)z滿足z(-1+2i)=|1+3i|2,(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),點(diǎn)P是橢圓上一點(diǎn),△PF1F2是等腰的鈍角三角形,且∠P=30°,則橢圓的離心率為(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\sqrt{2}$-1D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的一條漸近線與直線x-2y+4=0垂直,則b=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

同步練習(xí)冊答案