1.?dāng)?shù)列{an}滿足a1=1,(a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1-2,則a8=85.

分析 (a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1-2,n≥2時(shí),(a1+a2)+(a2+a3)+(a3+a4)+…+(an-1+an)=2n-2,可得an+an+1=2n.進(jìn)而得到an+1-an-1=2n-1.利用“累加求和”方法即可得出.

解答 解:(a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1-2,
n≥2時(shí),(a1+a2)+(a2+a3)+(a3+a4)+…+(an-1+an)=2n-2,
∴an+an+1=2n
n≥3時(shí),an-1+an=2n-1
∴an+1-an-1=2n-1
∵a1=1,可得a2=22-2-1=1.
則a8=(a8-a6)+(a6-a4)+(a4-a2)+a2=26+24+22+1=$\frac{{4}^{4}-1}{4-1}$=85.
故答案為:85.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式及其性質(zhì)、數(shù)列的遞推關(guān)系、累加求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合M={x|(x-1)(x+2)<0},N={x∈Z||x|≤2},則M∩N=( 。
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某經(jīng)銷商從外地水產(chǎn)養(yǎng)殖廠購進(jìn)一批小龍蝦,并隨機(jī)抽取40只進(jìn)行統(tǒng)計(jì),按重量分類統(tǒng)計(jì)結(jié)果如圖:
(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過35g的小龍蝦”,求P(A)的估計(jì)值;
(2)若購進(jìn)這批小龍蝦100千克,試估計(jì)這批小龍蝦的數(shù)量;
(3)為適應(yīng)市場(chǎng)需求,了解這批小龍蝦的口感,該經(jīng)銷商將這40只小龍蝦分成三個(gè)等級(jí),如下表:
等級(jí)一等品二等品三等品
重量(g)[5,25)[25,45)[45,55]
按分層抽樣抽取10只,再隨機(jī)抽取3只品嘗,記X為抽到二等品的數(shù)量,求抽到二級(jí)品的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t為參數(shù)),以O(shè)為極點(diǎn)x軸的正半軸為極軸建極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ-sinθ)=4,且與曲線C相交于A,B兩點(diǎn).
(Ⅰ)在直角坐標(biāo)系下求曲線C與直線l的普通方程;
(Ⅱ)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x≥y\\ 2x+y-2≥0\\ x≤1\end{array}\right.$,則z=y-2x的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|x2-2x-3≥0},B={x|-2≤x≤2},則A∩B=( 。
A.{x|1≤x≤2}B.{x|-1≤x≤2}C.{x|-1≤x≤1}D.{x|-2≤x≤-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和Sn有最大值,且$\frac{{{a_{2017}}}}{{{a_{2016}}}}$<-1,則使得Sn>0的n的最大值為(  )
A.2016B.2017C.4031D.4033

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|1≤x≤4},B={x|x>2},那么A∪B=(  )
A.(2,4)B.(2,4]C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,△ABC的面積為S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,則cosA=$\frac{{\sqrt{30}}}{15}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案