【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會中, 為了提高安保的級別同時又為了方便接待,現(xiàn)將其中的五個參會國的人員安排酒店住宿,這五個參會國要在、三家酒店選擇一家,且每家酒店至少有一個參會國入住,則這樣的安排方法共有

A.B.

C.D.

【答案】D

【解析】

根據(jù)題意,分2步進行①把5個個參會國的人員分成三組,一種是按照1、1、3;另一種是1、2、2;由組合數(shù)公式可得分組的方法數(shù)目,②,將分好的三組對應(yīng)三家酒店;由分步計數(shù)原理計算可得答案.

根據(jù)題意,分2步進行
①、五個參會國要在a、b、c三家酒店選擇一家,且這三家至少有一個參會國入住,
∴可以把5個國家人分成三組,一種是按照1、1、3;另一種是1、2、2
當(dāng)按照1、1、3來分時共有C53=10種分組方法;
當(dāng)按照1、2、2來分時共有 種分組方法;
則一共有 種分組方法;
②、將分好的三組對應(yīng)三家酒店,有 種對應(yīng)方法;
則安排方法共有 種;
故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直角坐標(biāo)平面內(nèi)的兩點滿足條件:都在函數(shù)的圖象上;②關(guān)于原點對稱.則稱點對是函數(shù)的一對友好點對”(點對看作同一對友好點對”).已知函數(shù)(),若此函數(shù)的友好點對有且只有一對,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)數(shù).

1)討論的單調(diào)性;

2)若上恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,點,角的內(nèi)角平分線所在直線的方程為,邊上的高所在直線的方程為.

1)求點的坐標(biāo);

2)求的內(nèi)切圓圓心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左焦點為,過點的直線交橢圓于兩點,的最大值為的最小值為,滿足.

(1)若線段垂直于軸時,,求橢圓的方程;

(2)設(shè)線段的中點為的垂直平分線與軸和軸分別交于,兩點,是坐標(biāo)原點,記的面積為的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該新產(chǎn)品在某網(wǎng)店試銷一個階段后得到銷售單價和月銷售量之間的一組數(shù)據(jù),如下表所示:

銷售單價(元)

9

9.5

10

10.5

11

月銷售量(萬件)

11

10

8

6

5

1)根據(jù)統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程,并預(yù)測月銷售量不低于12萬件時銷售單價的最大值;

2)生產(chǎn)企業(yè)與網(wǎng)店約定:若該新產(chǎn)品的月銷售量不低于10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店1萬元;若月銷售量不低于8萬件且不足10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店5000元;若月銷售量低于8萬件,則沒有獎勵.現(xiàn)用樣本估計總體,從上述5個銷售單價中任選2個銷售單價,下個月分別在兩個不同的網(wǎng)店進行銷售,求這兩個網(wǎng)店下個月獲得獎勵的總額的分布列及其數(shù)學(xué)期望.

參考公式:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計分別為,.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),下列命題:

為偶函數(shù);的最大值為2;

內(nèi)的零點個數(shù)為18;

的任何一個極大值都大于1

其中所有正確命題的序號是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點為,右焦點為,點在橢圓上.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點,直線分別與軸交于點,在軸上,是否存在點,使得無論非零實數(shù)怎樣變化,總有為直角?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·雅安高一檢測)已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x+2),

(1)求g(x)的解析式及定義域;

(2)求函數(shù)g(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案