【題目】已知無窮數(shù)列的前項中的最大項為,最小項為,設(shè)

1)若,求數(shù)列的通項公式;

2)若,求數(shù)列的前項和;

3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.

【答案】12,當(dāng)時,3)證明見解析

【解析】

1)根據(jù)數(shù)列為遞增數(shù)列得到答案.

2)計算,時,數(shù)列單調(diào)遞減,故時,,利用分組求和與錯位相減法計算得到答案.

3)設(shè)數(shù)列的公差為,則,討論,,三種情況,分別證明等差數(shù)列得到答案.

1是遞增數(shù)列,所以,所以.

2)由

當(dāng),即;當(dāng),即

,所以

當(dāng)時,

所以,

,對應(yīng)的前項和為,

,

兩式相減化簡整理得到:

當(dāng)時,.

綜上所述,,當(dāng)時,.

3)設(shè)數(shù)列的公差為,則,

由題意,

,對任意都成立,即是遞增數(shù)列.

所以,所以,

所以是公差為的等差數(shù)列;

②當(dāng)時,對任意都成立,進(jìn)而

所以是遞減數(shù)列.,所以

所以是公差為的等差數(shù)列;

③當(dāng)時,,

因為中至少有一個為0,所以二者都為0,進(jìn)而為常數(shù)列,

綜上所述,數(shù)列等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左焦點,,是橢圓上的兩個相異動點,若中點的橫坐標(biāo)為1,則到直線距離的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨立的從五所高校中任選2所.

1)求甲、乙、丙三名同學(xué)都選高校的概率;

2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機(jī)選2所.

i)求甲同學(xué)選高校且乙、丙都未選高校的概率;

ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】P是圓上的動點,P點在x軸上的射影是D,點M滿足

1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;

2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為ab,c,cosB

(Ⅰ)若c=2a,求的值;

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;

(Ⅱ)已知點設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點、點及拋物線.

1)若直線過點及拋物線上一點,當(dāng)最大時求直線的方程;

2軸上是否存在點,使得過點的任一條直線與拋物線交于點,且點到直線的距離相等?若存在,求出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)曲線上是否存在不同的兩點,(以上兩點坐標(biāo)均為極坐標(biāo),,),使點、的距離都為3?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)設(shè)是曲線上的一個動瞇,當(dāng)時,求點到直線的距離的最小值;

(2)若曲線上所有的點都在直線的右下方,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案