9.將函數(shù)$y=f'(x)cos(x-\frac{π}{2})$的圖象先向左平移$\frac{π}{4}$個單位,然后向上平移1個單位,得到函數(shù)y=2cos2x的圖象,則$f'(x-\frac{7π}{2})$是( 。
A.-2sinxB.-2cosxC.2sinxD.2cosx

分析 根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式,求得 $f'(x-\frac{7π}{2})$的值.

解答 解:由題意可得,把函數(shù)y=2cos2x-1+1=cos2x+1的圖象先向右平移$\frac{π}{4}$個單位,然后向下平移1個單位,
得到y(tǒng)=cos2(x-$\frac{π}{4}$)+1-1=cos(2x-$\frac{π}{2}$)=sin2x 的圖象.
再根據(jù)sin2x=f′(x)•sinx,∴f′(x)=2cosx,
故選:D.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律、誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知二面角α-l-β的大小為60°,點(diǎn)A∈α,AC⊥l,C垂足,B∈β,BD⊥l,D為垂足,若$AB=\sqrt{3}$,AC=BD=1,則D到平面ABC的距離等于( 。
A.$\frac{{\sqrt{66}}}{11}$B.$\frac{{2\sqrt{22}}}{11}$C.$\frac{{\sqrt{6}}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ex-ax-b.(e為自然對數(shù)的底數(shù),e≈2.71828)
(1)若曲線y=f(x)在x=1處取得極值1,求實(shí)數(shù)a、b的值;
(2)當(dāng)x∈(0,+∞)時,函數(shù)y=f(x)圖象上的點(diǎn)都在不等式組$\left\{\begin{array}{l}{x>0}\\{y≥x-b}\end{array}\right.$所表示的區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若三棱錐的一條棱長為x,其余棱長均為1,體積是V(x),則函數(shù)V(x)在其定義域上為( 。
A.增函數(shù)且有最大值B.增函數(shù)且沒有最大值
C.不是增函數(shù)且有最大值D.不是增函數(shù)且沒有最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.?dāng)?shù)列{an}中,a1=1,向量$\overrightarrow{a}=(2n,{a}_{n}),\overrightarrow=(n,{a}_{n-1})$(其中n∈N*,n≥2),若向量$\overrightarrow a∥\overrightarrow b$,則數(shù)列{an}的通項(xiàng)公式是( 。
A.an=2n-1B.an=2n-1C.an=2n-1D.an=n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x∈Z|lg(x2-x+8)≤1},B={x|x=t2,t∈A},A∩B=( 。
A.B.{0,1}C.{0,1,4}D.{-1,0,1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$\frac{{{{({1+i})}^2}}}{z}=1-i$(i為虛數(shù)單位),則復(fù)數(shù)z=( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}的通項(xiàng)公式an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$,若{an}的前n項(xiàng)和為24,則n=624.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中為奇函數(shù)的是( 。
A.y=x2+cosxB.y=|sinx|C.y=x2sinxD.y=sin|x|

查看答案和解析>>

同步練習(xí)冊答案