17.若三棱錐的一條棱長(zhǎng)為x,其余棱長(zhǎng)均為1,體積是V(x),則函數(shù)V(x)在其定義域上為( 。
A.增函數(shù)且有最大值B.增函數(shù)且沒(méi)有最大值
C.不是增函數(shù)且有最大值D.不是增函數(shù)且沒(méi)有最大值

分析 由題意畫出棱錐的圖形,AB=BC=CD=BD=AC=1,AD=x,取BC,AD的中點(diǎn)分別為E,F(xiàn),可知平面BC⊥面AED,可得S△AED=$\frac{1}{2}$AD•EF,V(x)=$\frac{1}{3}$•S△AED•BC=$\frac{{\sqrt{{x^2}({3-{x^2}})}}}{12}$,利用基本不等式的性質(zhì)即可得出最大值.

解答 解:由題意畫出棱錐的圖形,AB=BC=CD=BD=AC=1,AD=x,
取BC,AD的中點(diǎn)分別為E,F(xiàn),可知平面BC⊥面AED,
S△AED=$\frac{1}{2}$AD•EF=$\frac{1}{2}×x×\sqrt{{{({\frac{{\sqrt{3}}}{2}})}^2}-{{({\frac{x}{2}})}^2}}=\frac{{\sqrt{{x^2}({3-{x^2}})}}}{4}$,
∴V(x)=$\frac{1}{3}$•S△AED•BC=$\frac{{\sqrt{{x^2}({3-{x^2}})}}}{12}$$≤\frac{1}{12}×\frac{{{x^2}+3-{x^2}}}{2}=\frac{1}{8}$.當(dāng)且僅當(dāng)x=$\frac{\sqrt{6}}{2}$取等號(hào).
∴函數(shù)V(x)在其定義域上為不是增函數(shù),但是有最大值.  
故選:C.

點(diǎn)評(píng) 本題考查了三棱錐的性質(zhì)與體積計(jì)算公式、等腰三角形的性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三棱錐A-BCD中,△ABC和△BCD都為正三角形且BC=2,$AD=2\sqrt{3}$,E,F(xiàn),H分別是棱AB,BD,AC的中點(diǎn),G為FD的中點(diǎn).
(1)求異面直線AD和EC所成的角的大;
(2)求證:直線GH∥平面CEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.過(guò)橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1右焦點(diǎn)作一條斜率為$\frac{1}{2}$的直線與橢圓交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.直線l1和l2是圓x2+y2=2的兩條切線,切點(diǎn)分別為A,B,若l1與l2的交點(diǎn)為(1,3),則直線AB的方程為x+3y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點(diǎn)為F1(-c,0),右焦點(diǎn)為F2(c,0).若橢圓上存在一點(diǎn)P,線段PF2與圓${x^2}+{y^2}=\frac{c^2}{4}$相切于點(diǎn)E,且E為線段PF2中點(diǎn),則該橢圓的離心率為$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.為了了解四川省各景點(diǎn)在大眾中的熟知度,隨機(jī)對(duì)15~65歲的人群抽樣了n人,回答問(wèn)題“四川省有哪幾個(gè)著名的旅游景點(diǎn)?”統(tǒng)計(jì)結(jié)果如表.
組號(hào)分組回答正確的人數(shù)回答正確的人數(shù)
占本組的頻率
第1組[15,25)a0.5
第2組[25,35)18x
第3組[35,45)b0.9
第4組[45,55)90.36
第5組[55,65]3y
(1)分別求出a,b,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)通過(guò)直方圖求出年齡的眾數(shù),平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.將函數(shù)$y=f'(x)cos(x-\frac{π}{2})$的圖象先向左平移$\frac{π}{4}$個(gè)單位,然后向上平移1個(gè)單位,得到函數(shù)y=2cos2x的圖象,則$f'(x-\frac{7π}{2})$是( 。
A.-2sinxB.-2cosxC.2sinxD.2cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.0.5-1+40.5=4,lg2+lg5-($\frac{π}{23}$)0=0,10lg2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.為了判斷高中生的文理科選修是否與性別有關(guān),隨機(jī)調(diào)查了50名學(xué)生,得到如下2×2列聯(lián)表:
理科文科
1410
620
能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為選修文科與性別有關(guān)?
($P({K^2}≥3.841)≈0.05,P({K^2}≥5.024)≈0.025,{K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案