【題目】在正方體中,是棱的中點,是側(cè)面內(nèi)的動點,且平面,則與平面所成角的正切值構(gòu)成的集合是( )
A.B.
C.D.
【答案】D
【解析】
為確定F點位置,先找過與平面平行且與平面相交的平面,分別取的中點,連接,可知平面平面,故F在線段上,可知線面角為,分析其正切值即可求出.
設(shè)平面與直線交于點,連接,則為的中點.
分別取的中點,連接,則,
∵平面,平面,
∴平面,同理可得平面.
∵是平面內(nèi)的兩條相交直線,
∴平面平面,且平面,
可得直線平面,即點是線段上的動點.
設(shè)直線與平面所成角為,運動點并加以觀察,可得:
當(dāng)點與點(或)重合時,與平面所成角等于,此時所成角達(dá)到最小值,滿足;
當(dāng)點與中點重合時,與平面所成角達(dá)到最大值,
此時,∴與平面所成角的正切值構(gòu)成的集合為,故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(),把函數(shù)f(x)的圖象向左平移個單位得函數(shù)g(x)的圖象,則下面結(jié)論正確的是( )
A.函數(shù)g(x)是偶函數(shù)
B.函數(shù)g(x)的最小正周期是4π
C.函數(shù)g(x)在區(qū)間[π,3π]上是增區(qū)數(shù)
D.函數(shù)g(x)的圖象關(guān)于直線x=π對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
1當(dāng)時,求不等式的解集;
2若關(guān)于x的不等式有實數(shù)解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若橢圓:上有一動點,到橢圓的兩焦點,的距離之和等于,到直線的最大距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓交于不同兩點、,(為坐標(biāo)原點)且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,則函數(shù)在上的所有零點之和為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③若f(x)>0在上恒成立,則a的取值范圍是a>1;
④對任意的x1<0,x2<0且x1≠x2,恒有
.
其中正確命題的序號是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),當(dāng)x>0時,f(x)=lnx-ax,若函數(shù)在定義域上有且僅有4個零點,則實數(shù)a的取值范圍是( )
A.(e,+∞)B.(0,)
C.(1,)D.(-∞,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天干地支紀(jì)年法,源于中國,中國自古便有十天干與十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀(jì)年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推,排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推,已知2016年為丙申年,那么到改革開放100年時,即2078年為________年
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com