【題目】如圖(1),等腰梯形,,,,分別是的兩個(gè)三等分點(diǎn),若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn) 如圖(2).

1)求證:平面平面;

2)求平面與平面所成銳二面角的余弦值.

【答案】(1)詳見解析;(2).

【解析】

1)推導(dǎo)出,,從而,由此能證明平面平面;

2)過點(diǎn),過點(diǎn)的平行線交于點(diǎn),則,以為原點(diǎn),以,,所在直線分別為軸、軸、軸建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成銳二面角的余弦值.

1)證明:四邊形為等腰梯形,,, 的兩個(gè)三等分點(diǎn),

四邊形是正方形,,

,且,

平面,平面平面;

2)過點(diǎn)于點(diǎn),過點(diǎn)的平行線交于點(diǎn),則,

為坐標(biāo)原點(diǎn),以,,所在直線分別為軸、軸、軸建立空間直角坐標(biāo)系,如圖所示:

,,

,,,,

設(shè)平面的法向量

,取,得,

設(shè)平面的法向量,

,∴,取,得:,

設(shè)平面與平面所成銳二面角為,

平面與平面所成銳二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是( )

A. 在回歸模型中,預(yù)報(bào)變量的值不能由解釋變量唯一確定

B. 若變量滿足關(guān)系,且變量正相關(guān),則也正相關(guān)

C. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D. 以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓經(jīng)過點(diǎn),且離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)任作一條直線與橢圓交于不同的兩點(diǎn).在軸上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底而為正方形,底面,,點(diǎn)為棱的中點(diǎn),點(diǎn),分別為棱上的動(dòng)點(diǎn)(,與所在棱的端點(diǎn)不重合),且滿足.

(1)證明:平面平面;

(2)當(dāng)三棱錐的體積最大時(shí),求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為正方形,分別為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.

(1)證明:平面平面;

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的圖像關(guān)于直線對稱.

1)求的值;

2)判斷并證明函數(shù)在區(qū)間上的單調(diào)性;

3)若直線的圖像無公共點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某校新、老校區(qū)之間開車單程所需時(shí)間為,只與道路暢通狀況有關(guān),對其容量為的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如圖:

(分鐘)

25

30

35

40

頻數(shù)(次)

20

30

40

10

1)求的分布列與數(shù)學(xué)期望;

2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時(shí)間不超過120分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的普通方程為,曲線參數(shù)方程為為參數(shù));以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求的參數(shù)方程和的直角坐標(biāo)方程;

(2)已知上參數(shù)對應(yīng)的點(diǎn),上的點(diǎn),求中點(diǎn)到直線的距離取得最小值時(shí),點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)棱長為的正方體形狀的鐵盒內(nèi)放置一個(gè)正四面體,且能使該正四面體在鐵盒內(nèi)任意轉(zhuǎn)動(dòng),則該正四面體的體積的最大值是_____.

查看答案和解析>>

同步練習(xí)冊答案