在Rt△ABC中,∠C=90°,AC=4,則
AB
AC
=( 。
A、-16B、16C、-9D、9
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量垂直與數(shù)量積的關(guān)系、向量的三角形法則即可得出.
解答: 解:∵∠C=90°,
CB
AC
=0.
AB
AC
=(
CB
-
CA
)•
AC
=
AC
2
=16.
故選:B.
點(diǎn)評:本題考查了向量垂直與數(shù)量積的關(guān)系、向量的三角形法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+
π
4
)=
3
3
,則cos(2α-
π
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x)且x∈[0,1]時(shí),f(x)=x,則方程f(x)=log3|x|的零點(diǎn)個(gè)數(shù)是( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐曲線x2+my2=1的一個(gè)焦點(diǎn)坐標(biāo)為F(
2
|m|
,0),則該圓錐曲線的離心率為( 。
A、
2
3
3
B、
3
3
5
C、
5
D、
2
3
3
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PA,PB分別為⊙O的兩條切線,切點(diǎn)分別為A,B,過PA的中點(diǎn)Q作割線交⊙O于C,D兩點(diǎn),若QC=2,CD=3,則PB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一艘海輪從A處出發(fā),以每小時(shí)40海里的速度沿南偏東40°的方向直線航行,30分鐘后到達(dá)B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點(diǎn)間的距離是( 。┖@铮
A、10
2
B、20
3
C、10
3
D、20
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=2+cosθ
y=sinθ
(θ為參數(shù)).
(Ⅰ)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,
π
3
),寫出曲線C的極坐標(biāo)方程和點(diǎn)P的直角坐標(biāo);
(Ⅱ)設(shè)點(diǎn)Q(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),求t=x+y的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x-a|
+x2,(常數(shù)a∈R).
(1)根據(jù)a的不同取值,討論f(x)的奇偶性,并說明理由;
(2)設(shè)a=0,且t是正實(shí)數(shù),函數(shù)f(x)在區(qū)間[t,+∞) 上單調(diào)遞增,試根據(jù)函數(shù)單調(diào)性的定義求出t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S1=2,Sn+1=3Sn+2.
(Ⅰ)求通項(xiàng)公式an;
(Ⅱ)設(shè)bn=
an
S
2
n
,求證:b1+b2+…+bn<1.

查看答案和解析>>

同步練習(xí)冊答案