某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x萬件,需另投入的成本為C(x)(單位:萬元),當(dāng)年產(chǎn)量小于80萬件時,C(x)=
1
3
x2+10x;當(dāng)年產(chǎn)量不小于80萬件時,C(x)=51x+
10000
x
-1450.假設(shè)每萬件該產(chǎn)品的售價(jià)為50萬元,且該廠當(dāng)年生產(chǎn)的該產(chǎn)品能全部銷售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少萬件時,該廠在該產(chǎn)品的生產(chǎn)中所獲利潤最大?最大利潤是多少?
考點(diǎn):函數(shù)模型的選擇與應(yīng)用,函數(shù)解析式的求解及常用方法
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)分兩種情況進(jìn)行研究,當(dāng)0<x<80時,投入成本為C(x)=
1
3
x2+10x
(萬元),根據(jù)年利潤=銷售收入-成本,列出函數(shù)關(guān)系式,當(dāng)x≥80時,投入成本為C(x)=51x+
10000
x
-1450
,根據(jù)年利潤=銷售收入-成本,列出函數(shù)關(guān)系式,最后寫成分段函數(shù)的形式,從而得到答案;
(2)根據(jù)年利潤的解析式,分段研究函數(shù)的最值,當(dāng)0<x<80時,利用二次函數(shù)求最值,當(dāng)x≥80時,利用基本不等式求最值,最后比較兩個最值,即可得到答案.
解答: 解:(1)∵每件商品售價(jià)為0.05萬元,
∴x千件商品銷售額為0.05×1000x萬元,
①當(dāng)0<x<80時,根據(jù)年利潤=銷售收入-成本,
L(x)=(0.05×1000x)-
1
3
x2-10x-250
=-
1
3
x2+40x-250

②當(dāng)x≥80時,根據(jù)年利潤=銷售收入-成本,
L(x)=(0.05×1000x)-51x-
10000
x
+1450-250
=1200-(x+
10000
x
)

綜合①②可得,L(x)=
-
1
3
x2+40x-250(0<x<80)
1200-(x+
10000
x
)(x≥80).

(2)由(1)可知,L(x)=
-
1
3
x2+40x-250(0<x<80)
1200-(x+
10000
x
)(x≥80).
,
①當(dāng)0<x<80時,L(x)=-
1
3
x2+40x-250
=-
1
3
(x-60)2+950
,
∴當(dāng)x=60時,L(x)取得最大值L(60)=950萬元;
②當(dāng)x≥80時,L(x)=1200-(x+
10000
x
)
≤1200-2
x•
10000
x
=1200-200=1000,
當(dāng)且僅當(dāng)x=
10000
x
,即x=100時,L(x)取得最大值L(100)=1000萬元.
綜合①②,由于950<1000,
∴當(dāng)產(chǎn)量為10萬件時,該廠在這一商品中所獲利潤最大,最大利潤為1000萬元.
點(diǎn)評:本題主要考查函數(shù)模型的選擇與應(yīng)用.解決實(shí)際問題通常有四個步驟:(1)閱讀理解,認(rèn)真審題;(2)引進(jìn)數(shù)學(xué)符號,建立數(shù)學(xué)模型;(3)利用數(shù)學(xué)的方法,得到數(shù)學(xué)結(jié)果;(4)轉(zhuǎn)譯成具體問題作出解答,其中關(guān)鍵是建立數(shù)學(xué)模型.本題建立的數(shù)學(xué)模型為分段函數(shù),對于分段函數(shù)的問題,一般選用分類討論和數(shù)形結(jié)合的思想方法進(jìn)行求解.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線ax+y-2=0與直線x-y-2=0平行,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=logax(a>0,a≠1),且f(3)-f(2)=1.
(1)若f(3m-2)<f(2m+5),求實(shí)數(shù)m的取值范圍;
(2)求使f(x-
2
x
)=log
3
2
7
2
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+ax+b(a,b∈R),若0≤f(0)≤
1
4
,-
1
4
≤f(1)≤
5
4
,則以a,b為坐標(biāo)的點(diǎn)P(a,b)所構(gòu)成的圖形面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=2y-x,式中x、y滿足
0≤x≤1
0≤y≤2
2y-x≥1
,則z的最大值為( 。
A、0B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計(jì)算多項(xiàng)式f(x)=1+8x+7x2+5x4+4x5+3x6在x=5時所對應(yīng)的v4的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間[2,+∞)上單調(diào)遞增,那么實(shí)數(shù)a的取值范圍是(  )
A、a≥-1B、a≤-1
C、a≥3D、a≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=cosx與x=0,x=
5
6
π,y=0
圍成的幾何圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知幾何體的三視圖如圖所示,可得這個幾何體的體積是(  )
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案