(本小題滿(mǎn)分14分)
已知直線(xiàn)l與橢圓(ab>0)相交于不同兩點(diǎn)A、B,,且,以M為焦點(diǎn),以橢圓的右準(zhǔn)線(xiàn)為相應(yīng)準(zhǔn)線(xiàn)的雙曲線(xiàn)與直線(xiàn)l相交于N(4,1). (I)求橢圓的離心率; (II)設(shè)雙曲線(xiàn)的離心率為,記,求的解析式,并求其定義域和值域.
(I) 由題設(shè)易知,點(diǎn)M是線(xiàn)段AB的中點(diǎn),又由M(2,1).設(shè)A(), B(),

. 又易知,
兩式作差得:=
=,∴.又,
. 故.  
(II) 設(shè)橢圓的右準(zhǔn)線(xiàn)為,過(guò)點(diǎn)N于點(diǎn),則由雙曲線(xiàn)定義及題意知:
,
=. 由題設(shè)知l:,代入橢圓方程
得:.由△>0得, 由.
的定義域?yàn)?. 而上單調(diào)遞減,
,即
注:的定義域也可由“點(diǎn)M在橢圓內(nèi)部,”求得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線(xiàn)的一條準(zhǔn)線(xiàn)與拋物線(xiàn)y2=-6x的準(zhǔn)線(xiàn)重合,則該雙曲線(xiàn)的離心率是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)橢圓的左、右焦點(diǎn)分別為F1F2,過(guò)F1的直線(xiàn)l與橢圓交于A、B兩點(diǎn).(Ⅰ)如果點(diǎn)A在圓c為橢圓的半焦距)上,且|F1A|=c,求橢圓的離心率;(Ⅱ)若函數(shù)的圖象,無(wú)論m為何值時(shí)恒過(guò)定點(diǎn)(b,a),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),且離心率且過(guò)橢圓右焦點(diǎn)的直線(xiàn)與橢圓C交于兩點(diǎn).
(1)求橢圓C的方程;
(2)是否存在直線(xiàn),使得.若存在,求出直線(xiàn)的方程;若不存在,說(shuō)明理由.
(3)若AB是橢圓C經(jīng)過(guò)原點(diǎn)O的弦, MNAB,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)設(shè)直線(xiàn). 若直線(xiàn)l與曲線(xiàn)S同時(shí)滿(mǎn)足下列兩個(gè)條件:①直線(xiàn)l與曲線(xiàn)S相切且至少有兩個(gè)切點(diǎn);②對(duì)任意xR都有. 則稱(chēng)直線(xiàn)l為曲線(xiàn)S的“上夾線(xiàn)”.(Ⅰ)已知函數(shù).求證:為曲線(xiàn)的“上夾線(xiàn)”.
(Ⅱ)觀(guān)察下圖:
          
根據(jù)上圖,試推測(cè)曲線(xiàn)的“上夾線(xiàn)”的方程,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(理)已知方程x4+y2=1,給出下列結(jié)論:①它的圖形關(guān)于x軸對(duì)稱(chēng);②它的圖形關(guān)于y軸對(duì)稱(chēng);③它的圖形是一條封閉的曲線(xiàn),且面積小于π;④它的圖形是一條封閉的曲線(xiàn),且面積大于π.真命題的序號(hào)是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分16分)已知F1(-c,0), F2(c,0) (c>0)是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),圓M的方程是
(1)若P是圓M上的任意一點(diǎn),求證:是定值;
(2)若橢圓經(jīng)過(guò)圓上一點(diǎn)Q,且cos∠F1QF2=,求橢圓的離心率;
(3)在(2)的條件下,若|OQ|=,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若在曲線(xiàn)f(x,y)=0上兩個(gè)不同點(diǎn)處的切線(xiàn)重合,則稱(chēng)這條切線(xiàn)為曲線(xiàn)f(x,y)=0的“自公切線(xiàn)”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
|x|+1=
4-y2

對(duì)應(yīng)的曲線(xiàn)中存在“自公切線(xiàn)”的有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,A(-1,0),B(1,0),過(guò)曲線(xiàn)C1:y=x2-1(|x|≥1)上一點(diǎn)M的切線(xiàn)l,與曲線(xiàn)C2:y=-
m(1-x2)
(|x|<1)
也相切于點(diǎn)N,記點(diǎn)M的橫坐標(biāo)為t(t>1).
(1)用t表示m的值和點(diǎn)N的坐標(biāo);
(2)當(dāng)實(shí)數(shù)m取何值時(shí),∠MAB=∠NAB?并求此時(shí)MN所在直線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案