11.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{3}{4}$B.$\frac{11}{6}$C.$\frac{3}{2}$D.$\frac{5}{6}$

分析 由三視圖可知:該幾何體為一個三棱柱截去一個三棱錐得到的.

解答 解:由三視圖可知:該幾何體為一個三棱柱截去一個三棱錐得到的.
則該幾何體的體積V=$\frac{1}{2}×{1}^{2}$×2-$\frac{1}{3}×\frac{1}{2}×{1}^{2}×1$=$\frac{5}{6}$.
故選:D.

點評 本題考查了三棱柱與三棱錐的三視圖、體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若定義在R上的函數(shù)f(x)滿足f(x)+f'(x)<1,f(0)=4,則不等式ex[f(x)-1]>3(e為自然對數(shù)的底數(shù))的解集為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義在(0,+∞)上的函數(shù)y=f(x)滿足f(x)=[f′(x)-1]x,且f(1)=0.則函數(shù)y=f(x)的最小值為( 。
A.-$\frac{1}{e}$B.-1C.-eD.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$,則z=x-y的最大值為( 。
A.$\frac{1}{2}$B.1C.3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$12+4\sqrt{2}$B.$16+4\sqrt{2}$C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示,是我國古代軍隊用于屯糧的糧倉的三視圖,糧倉的底部建在地面上,圖中數(shù)據(jù)單位:m,cosα=$\frac{1}{6}$,cosβ=$\frac{3}{4}$,則該糧倉的側(cè)面積為( 。
A.$\frac{21π}{2}$m2B.$\frac{23π}{2}$m2C.12πm2D.$\frac{25π}{2}$m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知棱長為4的正方體ABCD-A′B′C′D′,M是正方形BB′C′C的中心,P是△A′C′D內(nèi)(包括邊界)的動點.滿足PM=PD,則點P的軌跡長度是(  )
A.$\frac{\sqrt{11}}{2}$B.$\frac{\sqrt{14}}{2}$C.$\sqrt{11}$D.$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD的底面ABCD為矩形,PA⊥平面ABCD,點E是棱PD的中點,點F是PC的中點F
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)若ABCD為正方形,探究在什么條件下,二面角C-AF-D大小為60°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)滿足:對任意α,β∈R,都有f(α•β)=α•f(β)+β•f(α),且f(2)=2,數(shù)列{an}滿足an=f(2n)(n∈N+).
(1)求數(shù)列{an}的通項公式;
(2)令bn=$\frac{{a}_{n}}{n}$($\frac{{a}_{n}}{n}$-1),cn=$\frac{_{n}}{_{n+1}}$,記Tn=$\frac{1}{n}$(c1+c2+…+cn)(n∈N+).問:是否存在正整數(shù)M,使得當(dāng)n∈N+時,不等式Tn<$\frac{M}{584}$恒成立?若存在,求出M的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案