16.如圖所示,是我國古代軍隊(duì)用于屯糧的糧倉的三視圖,糧倉的底部建在地面上,圖中數(shù)據(jù)單位:m,cosα=$\frac{1}{6}$,cosβ=$\frac{3}{4}$,則該糧倉的側(cè)面積為(  )
A.$\frac{21π}{2}$m2B.$\frac{23π}{2}$m2C.12πm2D.$\frac{25π}{2}$m2

分析 由三視圖可知糧倉是組合體:上面是圓錐、下面是圓臺(tái),由三視圖求出對(duì)應(yīng)的半徑、母線長,由圓錐和圓臺(tái)的側(cè)面面積公式糧倉的側(cè)面積.

解答 解:根據(jù)三視圖可知糧倉是組合體:上面是圓錐、下面是圓臺(tái),
∵cosβ=$\frac{3}{4}$,圓錐的底面圓半徑是$\frac{3}{2}$m,
∴圓錐的母線長是$\frac{\frac{3}{2}}{cosβ}$=$\frac{3}{2}$×$\frac{4}{3}$=2(m),
∵圓臺(tái)的底面圓半徑分別是$\frac{3}{2}$m、1m,cosα=$\frac{1}{6}$,
∴圓臺(tái)的母線長是$\frac{\frac{1}{2}}{cosα}$=$\frac{1}{2}×6$=3(m),
∴該糧倉的側(cè)面積S=$π×\frac{3}{2}×2+π(\frac{3}{2}+1)×3$=$\frac{21π}{2}$(m2
故選:A.

點(diǎn)評(píng) 本題考查由三視圖求幾何體的表面積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出下列命題:
①若a2>b2,則|a|>b;②若|a|>b,則a2>b2;
③若a>|b|,則a2>b2;④若a2>b2,則a>|b|.
其中一定正確的命題為(  )
A.②④B.①③C.①②D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,在直角梯形ABCD中,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),由B→C→D→A沿梯形各邊運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為f(x),如果AB=8,BC=4,CD=5,DA=5,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.8-2πB.8-$\frac{3}{4}$πC.8-$\frac{2}{3}$πD.8-$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{3}{4}$B.$\frac{11}{6}$C.$\frac{3}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某幾何體的三視圖如圖所示(單位:cm),則此幾何體的體積為64-16π(單位:cm3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)在[0,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一個(gè)幾何體的三視圖如圖所示(單位:m),求該幾何體的體積和表面積.(V圓錐體=$\frac{1}{3}$Sh,V圓柱體=Sh)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知(x+1)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n
(1)求a0及Sn=a1+a2+…+an的值;
(2)比較Sn與(n-2)2n+2n2的大小,并說明理由;
(3)求$\sum_{n=4}^{100}{\frac{a_4}{{n{2^{n-4}}}}}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案