分析 把圓柱沿著一條母線剪開后展開,然后利用直角三角形中的勾股定理求解從A到C的最短距離.
解答 解:如圖,
∵圓柱的軸截面是邊長為5cm的正方形,展開后為矩形ABA′B′,
BC為圓柱底面圓的周長的一半,等于$\frac{5π}{2}$,AB=5,
∴圓柱側(cè)面上從A到C的最短距離為$\sqrt{25+(\frac{5π}{2})^{2}}$=$\frac{5\sqrt{4+{π}^{2}}}{2}$.
故答案為:$\frac{5\sqrt{4+{π}^{2}}}{2}$.
點評 本題考查了旋轉(zhuǎn)體中的最短距離問題,關(guān)鍵在于對旋轉(zhuǎn)體的剪展,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | c<a<b | C. | a<b<c | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4} | B. | 1,3 | C. | 1,2,3,4 | D. | {1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b>c>a | B. | b>a>c | C. | a>b>c | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\sqrt{3}$ | B. | $\frac{3+\sqrt{3}}{2}$ | C. | $\frac{2+\sqrt{3}}{3}$ | D. | $\frac{3+\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com