沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過連接管道全部流到下部容器所需要的時(shí)間稱為該沙漏的一個(gè)沙時(shí).如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的
2
3
(細(xì)管長度忽略不計(jì)).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個(gè)沙時(shí)為多少秒(精確到1秒)?
(2)細(xì)沙全部漏入下部后,恰好堆成個(gè)一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).
考點(diǎn):根據(jù)實(shí)際問題選擇函數(shù)類型,函數(shù)的最值及其幾何意義
專題:計(jì)算題,應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)開始時(shí),沙漏上部分圓錐中的細(xì)沙的高為H=
2
3
×8=
16
3
,底面半徑為r=
2
3
×4=
8
3
;從而求時(shí)間;
(2)細(xì)沙漏入下部后,圓錐形沙堆的底面半徑4,設(shè)高為H′,從而得V=
1
3
π×42×H′=
1024
81
π;從而求高.
解答: 解:(1)開始時(shí),沙漏上部分圓錐中的細(xì)沙的高
為H=
2
3
×8=
16
3
,底面半徑為r=
2
3
×4=
8
3
;
V=
1
3
πr2H=
1
3
π×(
8
3
2×
16
3
=
1024
81
π≈39.71;
V÷0.02=1986(秒)
所以,沙全部漏入下部約需1986秒.

(2)細(xì)沙漏入下部后,圓錐形沙堆的底面半徑4,設(shè)高為H′,
V=
1
3
π×42×H′=
1024
81
π;
H′=
64
27
≈2.4;
錐形沙堆的高度約為2.4cm.
點(diǎn)評(píng):本題考查了函數(shù)在實(shí)際問題中的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長方體ABCD-EFGH中,AD=2,AB=AE=1,M為矩形AEHD內(nèi)的一點(diǎn),如果∠MGF=∠MGH,MG和平面EFG所成角的正切值為
1
2
,那么點(diǎn)M到平面EFGH的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f x=3sin2x+2
3
sinxcosx+5cos2x
(1)若f(α)=5,求tanα的值;
(2)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且(2a-c)cosB=bcosC,求函數(shù)f(x)在(0,B)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a、b、c分別是銳角△ABC的內(nèi)角A、B、C的對(duì)邊,向量
p
=(2-2sinA,cosA+sinA),
q
=(sinA-cosA,1+sinA),且
p
q
.已知a=
7
,△ABC面積為
3
3
2
,求b、c的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)盒子里面裝有標(biāo)號(hào)分別為1,2,3,4的4張標(biāo)簽,從中隨機(jī)同時(shí)抽取兩張標(biāo)簽,求兩張標(biāo)簽上的數(shù)字為相鄰整數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
x
x-1
(x>1),若a是從0,1,2三數(shù)中任取一個(gè),b是從1,2,3,4四數(shù)中任取一個(gè),那么f(x)>b恒成立的概率為(  )
A、
2
3
B、
7
20
C、
2
5
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2kax+(k-3)a-x (a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k值;
(2)若f(2)<0,試判斷函數(shù)f(x)的單調(diào)性,并求使不等式f(x2-x)+f(tx+4)<0恒成立的t的取值范圍;
(3)若f(2)=3,且g(x)=2x+2-x-2mf(x)在[2,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)幾何體的三視圖,其側(cè)面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax2-(a+2)x+1在區(qū)間(-2,-1)上恰有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案